A pruning-aware dynamic slimmable network using meta-gradients for high-speed train bogie bearing fault diagnosis

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jingsong Xie , Sha Cao , Tongyang Pan , Tiantian Wang , Jinsong Yang , Jinglong Chen
{"title":"A pruning-aware dynamic slimmable network using meta-gradients for high-speed train bogie bearing fault diagnosis","authors":"Jingsong Xie ,&nbsp;Sha Cao ,&nbsp;Tongyang Pan ,&nbsp;Tiantian Wang ,&nbsp;Jinsong Yang ,&nbsp;Jinglong Chen","doi":"10.1016/j.isatra.2025.02.031","DOIUrl":null,"url":null,"abstract":"<div><div>Although intelligent fault diagnosis achieves remarkable achievements, computation efficiency is a commonly ignored problem in existing studies. Pruning network networks enable us to find compact models that not only retain the diagnosis accuracy, but also consume fewer computation resources for training and inference. However, current studies are inefficient in building a saliency criterion for parameter importance evaluation. In this paper, we identify a pruning-aware dynamic slimmable network which uses the meta-gradients to select unnecessary parameters to prune. The slimmable network is designed with two sub-networks, called the classifier and the evaluator to generate meta-gradients for parameter pruning. And an iterative pruning algorithm is proposed to improve computation efficiency while retaining diagnosis performance. Our method is verified on a high-precision bogie fault simulation experimental data set and achieves state-of-art performance in terms of accuracy and efficiency compared with existing studies.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"160 ","pages":"Pages 196-204"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825001211","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Although intelligent fault diagnosis achieves remarkable achievements, computation efficiency is a commonly ignored problem in existing studies. Pruning network networks enable us to find compact models that not only retain the diagnosis accuracy, but also consume fewer computation resources for training and inference. However, current studies are inefficient in building a saliency criterion for parameter importance evaluation. In this paper, we identify a pruning-aware dynamic slimmable network which uses the meta-gradients to select unnecessary parameters to prune. The slimmable network is designed with two sub-networks, called the classifier and the evaluator to generate meta-gradients for parameter pruning. And an iterative pruning algorithm is proposed to improve computation efficiency while retaining diagnosis performance. Our method is verified on a high-precision bogie fault simulation experimental data set and achieves state-of-art performance in terms of accuracy and efficiency compared with existing studies.
基于元梯度的剪枝感知动态可细化网络用于高速列车转向架轴承故障诊断。
智能故障诊断虽然取得了令人瞩目的成就,但在现有的研究中,计算效率是一个经常被忽视的问题。修剪网络网络使我们能够找到紧凑的模型,既保持诊断准确性,又消耗更少的计算资源用于训练和推理。然而,目前的研究在建立参数重要性评价的显著性标准方面效率低下。本文提出了一种感知剪枝的动态可瘦网络,该网络利用元梯度选择不需要的参数进行剪枝。该可伸缩网络设计为两个子网络,分别称为分类器和评估器,用于生成用于参数修剪的元梯度。提出了一种迭代剪枝算法,在保持诊断性能的同时提高了计算效率。该方法在高精度转向架故障模拟实验数据集上得到了验证,与现有研究相比,在精度和效率方面都达到了先进水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信