Tao Li, Ruiqi Wang, Hongliang Ding, Tiantian Chen, Hyungchul Chung
{"title":"Bicycle crash frequency modeling across different crash severities using a random-forest-based Shapley Additive explanations approach.","authors":"Tao Li, Ruiqi Wang, Hongliang Ding, Tiantian Chen, Hyungchul Chung","doi":"10.1080/17457300.2025.2485040","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical modeling and data-driven studies on bicycle accidents are widespread, however, explanations of the underlying mechanisms remain limited, particularly regarding the impact of key risk factors on the bicycle crash frequency across different crash severities. This study aims to examine the effects of various risk factors on the frequency of bicycle crashes using Random Forest and Shapley Additive Explanations (RF-SHAP), taking into account the different crash severity levels. Data from three years of London crash data (2017 to 2019) is utilized. Population demographics, land use, road infrastructure, and traffic flows, are collected in Greater London. In addition to providing superior predictive accuracy, our proposed method identified critical risk factors at different levels of severity associated with bicycle crashes. The distinct contribution of this study is the identification of the primary factors influencing the severity of bicycle collisions in London through the use of RF-SHAP. The study quantifies both the main and interactive effects of various severity risk factors on bicycle collisions. Results suggest that the proportion of building areas and population density are most critical to bicycle crash numbers in different severity levels. Also, the interaction effects of the risk factors on bicycle crashes are revealed. Specifically, results reveal a negative correlation between traffic flow and overall bicycle crash frequency when the average road network connectivity is below 2.25. After controlling the population density, the proportion of residential areas shows a three-stage pattern of influence on the slight injury crash frequency. Furthermore, a boundary value of 6.3 is identified for the safety impact of road density on fatal and severely-injured bicycle crashes. Study findings should provide insights into cost-effective safety countermeasures for bicycle infrastructures, traffic controls, and safety education. Bicycle safety can be improved through these measures over the long term.</p>","PeriodicalId":47014,"journal":{"name":"International Journal of Injury Control and Safety Promotion","volume":" ","pages":"1-14"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Injury Control and Safety Promotion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17457300.2025.2485040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical modeling and data-driven studies on bicycle accidents are widespread, however, explanations of the underlying mechanisms remain limited, particularly regarding the impact of key risk factors on the bicycle crash frequency across different crash severities. This study aims to examine the effects of various risk factors on the frequency of bicycle crashes using Random Forest and Shapley Additive Explanations (RF-SHAP), taking into account the different crash severity levels. Data from three years of London crash data (2017 to 2019) is utilized. Population demographics, land use, road infrastructure, and traffic flows, are collected in Greater London. In addition to providing superior predictive accuracy, our proposed method identified critical risk factors at different levels of severity associated with bicycle crashes. The distinct contribution of this study is the identification of the primary factors influencing the severity of bicycle collisions in London through the use of RF-SHAP. The study quantifies both the main and interactive effects of various severity risk factors on bicycle collisions. Results suggest that the proportion of building areas and population density are most critical to bicycle crash numbers in different severity levels. Also, the interaction effects of the risk factors on bicycle crashes are revealed. Specifically, results reveal a negative correlation between traffic flow and overall bicycle crash frequency when the average road network connectivity is below 2.25. After controlling the population density, the proportion of residential areas shows a three-stage pattern of influence on the slight injury crash frequency. Furthermore, a boundary value of 6.3 is identified for the safety impact of road density on fatal and severely-injured bicycle crashes. Study findings should provide insights into cost-effective safety countermeasures for bicycle infrastructures, traffic controls, and safety education. Bicycle safety can be improved through these measures over the long term.
期刊介绍:
International Journal of Injury Control and Safety Promotion (formerly Injury Control and Safety Promotion) publishes articles concerning all phases of injury control, including prevention, acute care and rehabilitation. Specifically, this journal will publish articles that for each type of injury: •describe the problem •analyse the causes and risk factors •discuss the design and evaluation of solutions •describe the implementation of effective programs and policies The journal encompasses all causes of fatal and non-fatal injury, including injuries related to: •transport •school and work •home and leisure activities •sport •violence and assault