Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study.

IF 2.5 3区 医学 Q3 ONCOLOGY
Xiumei Li, Lina Song, Haidong Zhang, Xianqun Ji, Ping Song, Junjie Liu, Peng An
{"title":"Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study.","authors":"Xiumei Li, Lina Song, Haidong Zhang, Xianqun Ji, Ping Song, Junjie Liu, Peng An","doi":"10.1186/s12957-025-03760-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop predictive models for postoperative recurrence and overall survival in patients with brain glioma (BG) by integrating preoperative contrast-enhanced MRI-derived delta habitat radiomics features with clinical characteristics.</p><p><strong>Methods: </strong>In this retrospective study, preoperative contrast-enhanced MRI data and clinical records of 187 BG patients were analyzed. Patients were stratified into non-recurrence (n = 100) and recurrence (n = 87) cohorts based on postoperative outcomes. The dataset was randomly divided into training and test sets (7:3 ratio). Delta habitat radiomic features were extracted from intratumoral and peritumoral edema regions. A radiomic score (Radscore) was generated via LASSO regression with ten-fold cross-validation in the training cohort. Clinical variables (gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns) and radiomic features were compared between groups using χ² or Student's t-tests. Multivariate logistic regression models incorporating significant predictors were developed. Model performance was evaluated using AUC comparisons (DeLong test), decision curve analysis (clinical utility), and validated via XGBoost machine learning. Nomograms were constructed to visualize recurrence and survival predictions.</p><p><strong>Results: </strong>The training cohort revealed significant intergroup differences in gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns, and delta habitat radiomic scores (Radscore1/2, p < 0.05). The combined model (clinical + radiomic features) demonstrated superior predictive performance for recurrence [AUC 0.921 (95% CI 0.861-0.961), OR 0.023, sensitivity: 87.18%, specificity: 82.03%] compared to clinical-only [AUC 0.802 (0.745-0.833), OR 0.036] and radiomic-only [AUC 0.843 (0.769-0.900), OR 0.034] models (p < 0.05, DeLong test). Decision curve analysis confirmed greater clinical net benefit for the combined model. These findings were replicated in the test cohort. The survival nomogram incorporated IDH1 mutation status, gender, and Radscore1/2, with Kaplan-Meier analysis verifying their prognostic significance (p < 0.01).</p><p><strong>Conclusion: </strong>Delta habitat radiomics derived from preoperative contrast-enhanced MRI may enhance the accuracy of postoperative recurrence and survival predictions in BG patients. The validated nomograms provide actionable tools for optimizing postoperative surveillance and personalized clinical decision-making.</p>","PeriodicalId":23856,"journal":{"name":"World Journal of Surgical Oncology","volume":"23 1","pages":"104"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Surgical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12957-025-03760-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop predictive models for postoperative recurrence and overall survival in patients with brain glioma (BG) by integrating preoperative contrast-enhanced MRI-derived delta habitat radiomics features with clinical characteristics.

Methods: In this retrospective study, preoperative contrast-enhanced MRI data and clinical records of 187 BG patients were analyzed. Patients were stratified into non-recurrence (n = 100) and recurrence (n = 87) cohorts based on postoperative outcomes. The dataset was randomly divided into training and test sets (7:3 ratio). Delta habitat radiomic features were extracted from intratumoral and peritumoral edema regions. A radiomic score (Radscore) was generated via LASSO regression with ten-fold cross-validation in the training cohort. Clinical variables (gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns) and radiomic features were compared between groups using χ² or Student's t-tests. Multivariate logistic regression models incorporating significant predictors were developed. Model performance was evaluated using AUC comparisons (DeLong test), decision curve analysis (clinical utility), and validated via XGBoost machine learning. Nomograms were constructed to visualize recurrence and survival predictions.

Results: The training cohort revealed significant intergroup differences in gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns, and delta habitat radiomic scores (Radscore1/2, p < 0.05). The combined model (clinical + radiomic features) demonstrated superior predictive performance for recurrence [AUC 0.921 (95% CI 0.861-0.961), OR 0.023, sensitivity: 87.18%, specificity: 82.03%] compared to clinical-only [AUC 0.802 (0.745-0.833), OR 0.036] and radiomic-only [AUC 0.843 (0.769-0.900), OR 0.034] models (p < 0.05, DeLong test). Decision curve analysis confirmed greater clinical net benefit for the combined model. These findings were replicated in the test cohort. The survival nomogram incorporated IDH1 mutation status, gender, and Radscore1/2, with Kaplan-Meier analysis verifying their prognostic significance (p < 0.01).

Conclusion: Delta habitat radiomics derived from preoperative contrast-enhanced MRI may enhance the accuracy of postoperative recurrence and survival predictions in BG patients. The validated nomograms provide actionable tools for optimizing postoperative surveillance and personalized clinical decision-making.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
15.60%
发文量
362
审稿时长
3 months
期刊介绍: World Journal of Surgical Oncology publishes articles related to surgical oncology and its allied subjects, such as epidemiology, cancer research, biomarkers, prevention, pathology, radiology, cancer treatment, clinical trials, multimodality treatment and molecular biology. Emphasis is placed on original research articles. The journal also publishes significant clinical case reports, as well as balanced and timely reviews on selected topics. Oncology is a multidisciplinary super-speciality of which surgical oncology forms an integral component, especially with solid tumors. Surgical oncologists around the world are involved in research extending from detecting the mechanisms underlying the causation of cancer, to its treatment and prevention. The role of a surgical oncologist extends across the whole continuum of care. With continued developments in diagnosis and treatment, the role of a surgical oncologist is ever-changing. Hence, World Journal of Surgical Oncology aims to keep readers abreast with latest developments that will ultimately influence the work of surgical oncologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信