Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study.

IF 2.5 3区 医学 Q3 ONCOLOGY
Xiumei Li, Lina Song, Haidong Zhang, Xianqun Ji, Ping Song, Junjie Liu, Peng An
{"title":"Predicting postoperative recurrence and survival in glioma patients using enhanced MRI-based delta habitat radiomics: an 8-year retrospective pilot study.","authors":"Xiumei Li, Lina Song, Haidong Zhang, Xianqun Ji, Ping Song, Junjie Liu, Peng An","doi":"10.1186/s12957-025-03760-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop predictive models for postoperative recurrence and overall survival in patients with brain glioma (BG) by integrating preoperative contrast-enhanced MRI-derived delta habitat radiomics features with clinical characteristics.</p><p><strong>Methods: </strong>In this retrospective study, preoperative contrast-enhanced MRI data and clinical records of 187 BG patients were analyzed. Patients were stratified into non-recurrence (n = 100) and recurrence (n = 87) cohorts based on postoperative outcomes. The dataset was randomly divided into training and test sets (7:3 ratio). Delta habitat radiomic features were extracted from intratumoral and peritumoral edema regions. A radiomic score (Radscore) was generated via LASSO regression with ten-fold cross-validation in the training cohort. Clinical variables (gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns) and radiomic features were compared between groups using χ² or Student's t-tests. Multivariate logistic regression models incorporating significant predictors were developed. Model performance was evaluated using AUC comparisons (DeLong test), decision curve analysis (clinical utility), and validated via XGBoost machine learning. Nomograms were constructed to visualize recurrence and survival predictions.</p><p><strong>Results: </strong>The training cohort revealed significant intergroup differences in gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns, and delta habitat radiomic scores (Radscore1/2, p < 0.05). The combined model (clinical + radiomic features) demonstrated superior predictive performance for recurrence [AUC 0.921 (95% CI 0.861-0.961), OR 0.023, sensitivity: 87.18%, specificity: 82.03%] compared to clinical-only [AUC 0.802 (0.745-0.833), OR 0.036] and radiomic-only [AUC 0.843 (0.769-0.900), OR 0.034] models (p < 0.05, DeLong test). Decision curve analysis confirmed greater clinical net benefit for the combined model. These findings were replicated in the test cohort. The survival nomogram incorporated IDH1 mutation status, gender, and Radscore1/2, with Kaplan-Meier analysis verifying their prognostic significance (p < 0.01).</p><p><strong>Conclusion: </strong>Delta habitat radiomics derived from preoperative contrast-enhanced MRI may enhance the accuracy of postoperative recurrence and survival predictions in BG patients. The validated nomograms provide actionable tools for optimizing postoperative surveillance and personalized clinical decision-making.</p>","PeriodicalId":23856,"journal":{"name":"World Journal of Surgical Oncology","volume":"23 1","pages":"104"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Surgical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12957-025-03760-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop predictive models for postoperative recurrence and overall survival in patients with brain glioma (BG) by integrating preoperative contrast-enhanced MRI-derived delta habitat radiomics features with clinical characteristics.

Methods: In this retrospective study, preoperative contrast-enhanced MRI data and clinical records of 187 BG patients were analyzed. Patients were stratified into non-recurrence (n = 100) and recurrence (n = 87) cohorts based on postoperative outcomes. The dataset was randomly divided into training and test sets (7:3 ratio). Delta habitat radiomic features were extracted from intratumoral and peritumoral edema regions. A radiomic score (Radscore) was generated via LASSO regression with ten-fold cross-validation in the training cohort. Clinical variables (gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns) and radiomic features were compared between groups using χ² or Student's t-tests. Multivariate logistic regression models incorporating significant predictors were developed. Model performance was evaluated using AUC comparisons (DeLong test), decision curve analysis (clinical utility), and validated via XGBoost machine learning. Nomograms were constructed to visualize recurrence and survival predictions.

Results: The training cohort revealed significant intergroup differences in gender, IDH1 mutation, 1p19q co-deletion, MRI enhancement patterns, and delta habitat radiomic scores (Radscore1/2, p < 0.05). The combined model (clinical + radiomic features) demonstrated superior predictive performance for recurrence [AUC 0.921 (95% CI 0.861-0.961), OR 0.023, sensitivity: 87.18%, specificity: 82.03%] compared to clinical-only [AUC 0.802 (0.745-0.833), OR 0.036] and radiomic-only [AUC 0.843 (0.769-0.900), OR 0.034] models (p < 0.05, DeLong test). Decision curve analysis confirmed greater clinical net benefit for the combined model. These findings were replicated in the test cohort. The survival nomogram incorporated IDH1 mutation status, gender, and Radscore1/2, with Kaplan-Meier analysis verifying their prognostic significance (p < 0.01).

Conclusion: Delta habitat radiomics derived from preoperative contrast-enhanced MRI may enhance the accuracy of postoperative recurrence and survival predictions in BG patients. The validated nomograms provide actionable tools for optimizing postoperative surveillance and personalized clinical decision-making.

使用基于增强mri的三角洲栖息地放射组学预测胶质瘤患者术后复发和生存:一项为期8年的回顾性试点研究。
目的:本研究旨在通过将术前对比增强mri衍生的三角洲栖息地放射组学特征与临床特征相结合,建立脑胶质瘤(BG)患者术后复发和总生存的预测模型。方法:回顾性分析187例BG患者术前MRI增强资料及临床资料。根据术后结果将患者分为未复发组(n = 100)和复发组(n = 87)。数据集随机分为训练集和测试集(比例为7:3)。从肿瘤内和肿瘤周围水肿区提取三角洲栖息地放射学特征。放射学评分(Radscore)通过LASSO回归在训练队列中进行十倍交叉验证。临床变量(性别、IDH1突变、1p19q共缺失、MRI增强模式)和放射学特征采用χ 2或学生t检验进行组间比较。建立了包含显著预测因子的多元逻辑回归模型。通过AUC比较(DeLong测试)、决策曲线分析(临床效用)评估模型性能,并通过XGBoost机器学习进行验证。构建nomogram来可视化预测复发和生存。结果:训练队列显示,性别、IDH1突变、1p19q共缺失、MRI增强模式和delta habitat放射组学评分(Radscore1/2, p)在组间存在显著差异。结论:术前增强MRI获得的delta habitat放射组学可以提高BG患者术后复发和生存预测的准确性。经过验证的形态图为优化术后监测和个性化临床决策提供了可行的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
15.60%
发文量
362
审稿时长
3 months
期刊介绍: World Journal of Surgical Oncology publishes articles related to surgical oncology and its allied subjects, such as epidemiology, cancer research, biomarkers, prevention, pathology, radiology, cancer treatment, clinical trials, multimodality treatment and molecular biology. Emphasis is placed on original research articles. The journal also publishes significant clinical case reports, as well as balanced and timely reviews on selected topics. Oncology is a multidisciplinary super-speciality of which surgical oncology forms an integral component, especially with solid tumors. Surgical oncologists around the world are involved in research extending from detecting the mechanisms underlying the causation of cancer, to its treatment and prevention. The role of a surgical oncologist extends across the whole continuum of care. With continued developments in diagnosis and treatment, the role of a surgical oncologist is ever-changing. Hence, World Journal of Surgical Oncology aims to keep readers abreast with latest developments that will ultimately influence the work of surgical oncologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信