An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.

IF 11.1 Q1 CELL BIOLOGY
Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu
{"title":"An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.","authors":"Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu","doi":"10.1016/j.xgen.2025.100820","DOIUrl":null,"url":null,"abstract":"<p><p>Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100820"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信