Broadening the ARMC2 mutational phenotype: linking multiple morphological abnormalities of the Flagella to Pulmonary Manifestations in Primary Ciliary Dyskinesia.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Baoyan Wu, Wenhao Zhang, Hui Yu, Lewen Ruan, Kai Wang, Meng Gu, Hao Geng, Jiajun Fang, Chuan Xu, Yuying Sheng, Qing Tan, Qunshan Shen, Zongliu Duan, Huan Wu, Rong Hua, Rui Guo, Zhaolian Wei, Ping Zhou, Yuping Xu, Yunxia Cao, Xiaojin He, Kuokuo Li, Mingrong Lv, Dongdong Tang
{"title":"Broadening the ARMC2 mutational phenotype: linking multiple morphological abnormalities of the Flagella to Pulmonary Manifestations in Primary Ciliary Dyskinesia.","authors":"Baoyan Wu, Wenhao Zhang, Hui Yu, Lewen Ruan, Kai Wang, Meng Gu, Hao Geng, Jiajun Fang, Chuan Xu, Yuying Sheng, Qing Tan, Qunshan Shen, Zongliu Duan, Huan Wu, Rong Hua, Rui Guo, Zhaolian Wei, Ping Zhou, Yuping Xu, Yunxia Cao, Xiaojin He, Kuokuo Li, Mingrong Lv, Dongdong Tang","doi":"10.1186/s12958-025-01385-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Severe asthenoteratozoospermia, a prevalent cause of male infertility, has increasingly been associated with ARMC2 variants that cause Multiple Morphological Abnormalities of the Sperm Flagella (MMAF). Although ARMC2 is also expressed in other ciliary structures, no studies have yet reported a link between ARMC2 gene variants and other symptoms of Primary Ciliary Dyskinesia (PCD).</p><p><strong>Methods: </strong>Here, we performed whole-exome sequencing (WES) on Chinese subjects with MMAF to identify potential genetic variants. Sanger sequencing was used to validate the candidate variants. Sperm morphology was assessed using modified hematoxylin and eosin (H&E) staining, and transmission electron microscopy (TEM) was performed to observe the ultrastructural defects of the sperm flagella. Western blot analysis and immunofluorescence (IF) of spermatozoa were performed to evaluate variations in structural protein. Additionally, intracytoplasmic sperm injection (ICSI) was applied for assisted fertilization.</p><p><strong>Results: </strong>We identified two compound heterozygous ARMC2 variants and one homozygous variant (P1: c.1030_1042del, p.T344fs/c.1331G > A, p.R444H; P2:c.1264C > T, p.R422X) in two unrelated individuals. Notably, in addition to MMAF, individual P2 exhibited classic symptoms of PCD in the lungs, including recurrent airway infections, bronchitis, and rhinosinusitis. Morphological and ultrastructural analyses of the spermatozoa obtained from the two individuals revealed dramatic disorganization in axonemal and peri-axonemal structures, as well as the absence of the axonemal central pair complex (CPC). Immunoblotting and immunofluorescence assays revealed the reduced expression of ARMC2 and the abnormality of various axonal structural proteins. Further assisted reproduction outcomes showed that one of the individuals conceived successfully after Intracytoplasmic Sperm Injection (ICSI).</p><p><strong>Conclusions: </strong>Overall, this study significantly expanded the mutational phenotype of ARMC2, marking the first discovery of PCD-related pulmonary phenotypes outside of the reproductive system. This work establishes the association between ARMC2 and typical PCD and lays the groundwork for further investigation into the molecular mechanisms of ARMC2 in both flagellogenesis and ciliogenesis.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"23 1","pages":"48"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Biology and Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-025-01385-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Severe asthenoteratozoospermia, a prevalent cause of male infertility, has increasingly been associated with ARMC2 variants that cause Multiple Morphological Abnormalities of the Sperm Flagella (MMAF). Although ARMC2 is also expressed in other ciliary structures, no studies have yet reported a link between ARMC2 gene variants and other symptoms of Primary Ciliary Dyskinesia (PCD).

Methods: Here, we performed whole-exome sequencing (WES) on Chinese subjects with MMAF to identify potential genetic variants. Sanger sequencing was used to validate the candidate variants. Sperm morphology was assessed using modified hematoxylin and eosin (H&E) staining, and transmission electron microscopy (TEM) was performed to observe the ultrastructural defects of the sperm flagella. Western blot analysis and immunofluorescence (IF) of spermatozoa were performed to evaluate variations in structural protein. Additionally, intracytoplasmic sperm injection (ICSI) was applied for assisted fertilization.

Results: We identified two compound heterozygous ARMC2 variants and one homozygous variant (P1: c.1030_1042del, p.T344fs/c.1331G > A, p.R444H; P2:c.1264C > T, p.R422X) in two unrelated individuals. Notably, in addition to MMAF, individual P2 exhibited classic symptoms of PCD in the lungs, including recurrent airway infections, bronchitis, and rhinosinusitis. Morphological and ultrastructural analyses of the spermatozoa obtained from the two individuals revealed dramatic disorganization in axonemal and peri-axonemal structures, as well as the absence of the axonemal central pair complex (CPC). Immunoblotting and immunofluorescence assays revealed the reduced expression of ARMC2 and the abnormality of various axonal structural proteins. Further assisted reproduction outcomes showed that one of the individuals conceived successfully after Intracytoplasmic Sperm Injection (ICSI).

Conclusions: Overall, this study significantly expanded the mutational phenotype of ARMC2, marking the first discovery of PCD-related pulmonary phenotypes outside of the reproductive system. This work establishes the association between ARMC2 and typical PCD and lays the groundwork for further investigation into the molecular mechanisms of ARMC2 in both flagellogenesis and ciliogenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reproductive Biology and Endocrinology
Reproductive Biology and Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.30%
发文量
161
审稿时长
4-8 weeks
期刊介绍: Reproductive Biology and Endocrinology publishes and disseminates high-quality results from excellent research in the reproductive sciences. The journal publishes on topics covering gametogenesis, fertilization, early embryonic development, embryo-uterus interaction, reproductive development, pregnancy, uterine biology, endocrinology of reproduction, control of reproduction, reproductive immunology, neuroendocrinology, and veterinary and human reproductive medicine, including all vertebrate species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信