{"title":"Forced wheel running pre-conditioning diminishes reward learning induced by methamphetamine: Involvement of orexin 1 receptor in the hippocampus","authors":"Mansoureh Ahmadpour , Shaghayegh Modaberi , Abbas Haghparast , Rana Fayazmilani","doi":"10.1016/j.physbeh.2025.114892","DOIUrl":null,"url":null,"abstract":"<div><div>Methamphetamine (METH) is a highly addictive drug that leads to neurobehavioral changes related to the brain's reward circuit. Orexin and orexinergic receptors, found in crucial brain areas involved in reward processing, may play a significant role in reward mechanisms and addiction. Studies have shown that physical exercise can be an effective non-pharmacological approach to controlling drug use but limited research explores its role as pre-conditioning to prevent dependency on narcotics. In this study, 48 male Wistar rats were assigned into six groups: exercise training+saline (EX-SA), exercise training+METH 1mg/kg (EX-METH1), exercise training + METH 2 mg/kg (EX-METH2), control+saline (CON), control+METH 1 mg/kg (CON-METH1), control+METH 2 mg/kg (CON-METH2). The pre-conditioning groups underwent forced wheel-running training (five days a week, at 65 % Vmax) for eight weeks. Following pre-conditioning with exercise training, the METH groups received intraperitoneal (IP) METH injections using the conditioned place preference (CPP) model. After the post-test, the animals were dissected, and hippocampal tissue was collected to measure orexin receptor1 (OXR1) expression levels. The results showed that long-term, moderate-intensity forced exercise pre-conditioning prevented METH-induced CPP. However, CPP was observed only in the EX-METH2 group, receiving a double dose of the drug. Molecular analysis also revealed a significant increase in OXR1 expression in the hippocampus following METH injections, while physical exercise caused suppression in OXR1 increment. Seemingly, prior exercise influences this pathway and effectively prevents conditioning to METH, probably through OXR1, indicating an adaptation in the mesolimbic reward pathway that helps protect against METH addiction.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"295 ","pages":"Article 114892"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938425000939","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Methamphetamine (METH) is a highly addictive drug that leads to neurobehavioral changes related to the brain's reward circuit. Orexin and orexinergic receptors, found in crucial brain areas involved in reward processing, may play a significant role in reward mechanisms and addiction. Studies have shown that physical exercise can be an effective non-pharmacological approach to controlling drug use but limited research explores its role as pre-conditioning to prevent dependency on narcotics. In this study, 48 male Wistar rats were assigned into six groups: exercise training+saline (EX-SA), exercise training+METH 1mg/kg (EX-METH1), exercise training + METH 2 mg/kg (EX-METH2), control+saline (CON), control+METH 1 mg/kg (CON-METH1), control+METH 2 mg/kg (CON-METH2). The pre-conditioning groups underwent forced wheel-running training (five days a week, at 65 % Vmax) for eight weeks. Following pre-conditioning with exercise training, the METH groups received intraperitoneal (IP) METH injections using the conditioned place preference (CPP) model. After the post-test, the animals were dissected, and hippocampal tissue was collected to measure orexin receptor1 (OXR1) expression levels. The results showed that long-term, moderate-intensity forced exercise pre-conditioning prevented METH-induced CPP. However, CPP was observed only in the EX-METH2 group, receiving a double dose of the drug. Molecular analysis also revealed a significant increase in OXR1 expression in the hippocampus following METH injections, while physical exercise caused suppression in OXR1 increment. Seemingly, prior exercise influences this pathway and effectively prevents conditioning to METH, probably through OXR1, indicating an adaptation in the mesolimbic reward pathway that helps protect against METH addiction.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.