Quantifying phase magnitudes of open-source focused-probe 4D-STEM ptychography reconstructions.

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Toma Susi
{"title":"Quantifying phase magnitudes of open-source focused-probe 4D-STEM ptychography reconstructions.","authors":"Toma Susi","doi":"10.1111/jmi.13409","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate computational ptychographic phase reconstructions are enabled by fast direct-electron cameras with high dynamic ranges used for four-dimensional scanning transmission electron microscopy (4D-STEM). The availability of open software packages is making such analyses widely accessible, and especially when implemented in Python, easy to compare in terms of computational efficiency and reconstruction quality. In this contribution, I reconstruct atomic phase shifts from convergent-beam electron diffraction maps of pristine monolayer graphene, which is an ideal dose-robust uniform phase object, acquired on a Dectris ARINA detector installed in a Nion UltraSTEM 100 operated at 60 keV with a focused-probe convergence semi-angle of 34 mrad. For two different recorded maximum scattering angle settings, I compare a range of direct and iterative open-source phase reconstruction algorithms, evaluating their computational efficiency and tolerance to reciprocal-space binning and real-space thinning of the data. The quality of the phase images is assessed by quantifying the variation of atomic phase shifts using a robust parameter-based method, revealing an overall agreement with some notable differences in the absolute magnitudes and the variation of the phases. Although such variation is not a major issue when analysing data with many identical atoms, it does put limits on what level of precision can be relied upon for unique sites such as defects or dopants, which also tend to be more dose-sensitive. Overall, these findings and the accompanying open data and code provide useful guidance for the sampling required for desired levels of phase precision, and suggest particular care is required when relying on electron ptychography for quantitative analyses of atomic-scale electromagnetic properties.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13409","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate computational ptychographic phase reconstructions are enabled by fast direct-electron cameras with high dynamic ranges used for four-dimensional scanning transmission electron microscopy (4D-STEM). The availability of open software packages is making such analyses widely accessible, and especially when implemented in Python, easy to compare in terms of computational efficiency and reconstruction quality. In this contribution, I reconstruct atomic phase shifts from convergent-beam electron diffraction maps of pristine monolayer graphene, which is an ideal dose-robust uniform phase object, acquired on a Dectris ARINA detector installed in a Nion UltraSTEM 100 operated at 60 keV with a focused-probe convergence semi-angle of 34 mrad. For two different recorded maximum scattering angle settings, I compare a range of direct and iterative open-source phase reconstruction algorithms, evaluating their computational efficiency and tolerance to reciprocal-space binning and real-space thinning of the data. The quality of the phase images is assessed by quantifying the variation of atomic phase shifts using a robust parameter-based method, revealing an overall agreement with some notable differences in the absolute magnitudes and the variation of the phases. Although such variation is not a major issue when analysing data with many identical atoms, it does put limits on what level of precision can be relied upon for unique sites such as defects or dopants, which also tend to be more dose-sensitive. Overall, these findings and the accompanying open data and code provide useful guidance for the sampling required for desired levels of phase precision, and suggest particular care is required when relying on electron ptychography for quantitative analyses of atomic-scale electromagnetic properties.

量化开源聚焦探针4D-STEM型图重建的相位幅度。
精确的计算型相位重建是通过用于四维扫描透射电子显微镜(4D-STEM)的高动态范围的快速直接电子相机实现的。开放软件包的可用性使得这种分析可以广泛访问,特别是在Python中实现时,可以很容易地在计算效率和重建质量方面进行比较。在这篇论文中,我从原始单层石墨烯的汇聚束电子衍射图中重建了原子相移,这是一种理想的剂量坚固的均匀相物体,由安装在Nion UltraSTEM 100上的Dectris ARINA探测器获得,该探测器在60 keV下工作,聚焦探针收敛半角为34 mrad。对于两种不同的记录最大散射角设置,我比较了一系列直接和迭代的开源相位重建算法,评估了它们的计算效率和对往复空间分割和数据实空间细化的容忍度。通过使用稳健的基于参数的方法量化原子相移的变化来评估相位图像的质量,揭示了在绝对幅度和相位变化方面的一些显着差异的总体一致。虽然在分析具有许多相同原子的数据时,这种变化不是主要问题,但它确实限制了对缺陷或掺杂等独特位置所依赖的精度水平,这些位置往往对剂量更敏感。总的来说,这些发现和随附的开放数据和代码为所需的相位精度水平的采样提供了有用的指导,并建议在依赖电子型图进行原子尺度电磁特性定量分析时需要特别小心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信