Enabling global image data sharing in the life sciences.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Peter Bajcsy, Sreenivas Bhattiprolu, Katy Börner, Beth A Cimini, Lucy Collinson, Jan Ellenberg, Reto Fiolka, Maryellen Giger, Wojtek Goscinski, Matthew Hartley, Nathan Hotaling, Rick Horwitz, Florian Jug, Isabel Kemmer, Anna Kreshuk, Emma Lundberg, Aastha Mathur, Kedar Narayan, Shuichi Onami, Anne L Plant, Fred Prior, Jason R Swedlow, Adam Taylor, Antje Keppler
{"title":"Enabling global image data sharing in the life sciences.","authors":"Peter Bajcsy, Sreenivas Bhattiprolu, Katy Börner, Beth A Cimini, Lucy Collinson, Jan Ellenberg, Reto Fiolka, Maryellen Giger, Wojtek Goscinski, Matthew Hartley, Nathan Hotaling, Rick Horwitz, Florian Jug, Isabel Kemmer, Anna Kreshuk, Emma Lundberg, Aastha Mathur, Kedar Narayan, Shuichi Onami, Anne L Plant, Fred Prior, Jason R Swedlow, Adam Taylor, Antje Keppler","doi":"10.1038/s41592-024-02585-z","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of imaging in biological and medical research, a large body of informative and precious image data never sees the light of day. To ensure scientific rigor as well as the reuse of data for scientific discovery, image data need to be made FAIR (findable, accessible, interoperable and reusable). Image data experts are working together globally to agree on common data formats, metadata, ontologies and supporting tools toward image data FAIRification. With this Perspective, we call on public funders to join these efforts to support their national scientists. What researchers most urgently need are openly accessible resources for image data storage that are operated under long-term commitments by their funders. Although existing resources in Australia, Japan and Europe are already collaborating to enable global image data sharing, these efforts will fall short unless more countries invest in operating and federating their own open data resources. This will allow us to harvest the enormous potential of existing image data, preventing substantial loss of unrealized value from past investments in imaging acquisition infrastructure.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02585-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the importance of imaging in biological and medical research, a large body of informative and precious image data never sees the light of day. To ensure scientific rigor as well as the reuse of data for scientific discovery, image data need to be made FAIR (findable, accessible, interoperable and reusable). Image data experts are working together globally to agree on common data formats, metadata, ontologies and supporting tools toward image data FAIRification. With this Perspective, we call on public funders to join these efforts to support their national scientists. What researchers most urgently need are openly accessible resources for image data storage that are operated under long-term commitments by their funders. Although existing resources in Australia, Japan and Europe are already collaborating to enable global image data sharing, these efforts will fall short unless more countries invest in operating and federating their own open data resources. This will allow us to harvest the enormous potential of existing image data, preventing substantial loss of unrealized value from past investments in imaging acquisition infrastructure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信