Magnetic properties and electronic structure ofJeff=12square lattice quantum magnet Bi2ErO4Cl.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
V K Singh, Seong-Hoon Kim, K Nam, U Jena, K Boya, P Khuntia, E Kermarrec, Kee Hoon Kim, S Bhowal, B Koteswararao
{"title":"Magnetic properties and electronic structure ofJeff=12square lattice quantum magnet Bi<sub>2</sub>ErO<sub>4</sub>Cl.","authors":"V K Singh, Seong-Hoon Kim, K Nam, U Jena, K Boya, P Khuntia, E Kermarrec, Kee Hoon Kim, S Bhowal, B Koteswararao","doi":"10.1088/1361-648X/adc6e5","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) rare-earth-based square lattice (SL) quantum magnets provide a pathway to achieve distinctive ground states characterized by unusual excitations. We investigate the magnetic, heat capacity, structural, and electronic properties of a magnetic system Bi<sub>2</sub>ErO<sub>4</sub>Cl. This compound features a structurally ideal 2D SL composed of Er<sup>3+</sup>rare-earth magnetic ions. The single-phase polycrystalline sample was synthesized using hydrothermal, followed by a vacuum-sealed tube technique. The analysis of heat capacity and magnetic data indicates that the Er<sup>3+</sup>ion adopts aJeff=12state at low temperatures. Fitting the Curie-Weiss (CW) law to the low-temperature magnetic susceptibility data reveals a CW temperature of approximately -2.1 K, suggesting antiferromagnetic (AFM) interactions between the Er<sup>3+</sup>moments. Our first-principles calculations validate a 2D spin model relevant to the titled Er compound. The presence of AFM interaction between the Er<sup>3+</sup>ions is further confirmed using total energy calculations (DFT+<i>U</i>), aligning with the experimental results. The heat capacity measurements reveal the presence of magnetic long-range order below<i>T</i><sub>N</sub>= 0.47 K. The magnetic heat capacity data follows<i>T</i><sup>1.8</sup>power law dependence below<i>T</i><sub>N</sub>.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc6e5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) rare-earth-based square lattice (SL) quantum magnets provide a pathway to achieve distinctive ground states characterized by unusual excitations. We investigate the magnetic, heat capacity, structural, and electronic properties of a magnetic system Bi2ErO4Cl. This compound features a structurally ideal 2D SL composed of Er3+rare-earth magnetic ions. The single-phase polycrystalline sample was synthesized using hydrothermal, followed by a vacuum-sealed tube technique. The analysis of heat capacity and magnetic data indicates that the Er3+ion adopts aJeff=12state at low temperatures. Fitting the Curie-Weiss (CW) law to the low-temperature magnetic susceptibility data reveals a CW temperature of approximately -2.1 K, suggesting antiferromagnetic (AFM) interactions between the Er3+moments. Our first-principles calculations validate a 2D spin model relevant to the titled Er compound. The presence of AFM interaction between the Er3+ions is further confirmed using total energy calculations (DFT+U), aligning with the experimental results. The heat capacity measurements reveal the presence of magnetic long-range order belowTN= 0.47 K. The magnetic heat capacity data followsT1.8power law dependence belowTN.

jeff = 1/2方晶格量子磁体Bi2ErO4Cl的磁性和电子结构。
二维稀土基方晶格量子磁体提供了一种途径,以实现独特的基态,其特征是不寻常的激发。我们研究了Bi2ErO4Cl磁性体系的磁性、热容量、结构和电子性质。该化合物具有由Er3+稀土磁性离子组成的理想二维方阵结构。采用水热法和真空封管法合成了单相多晶样品。热容和磁性数据分析表明,Er3+离子在低温下呈aJeff= 1/2态。将居里-魏斯定律拟合到低温磁化率数据中,发现居里-魏斯温度约为-2.1 K,表明Er3+矩之间存在反铁磁(AFM)相互作用。我们的第一性原理计算验证了与标题为Er的化合物相关的二维自旋模型。利用总能量计算(LDA+U)进一步证实了Er3+离子之间存在AFM相互作用,与实验结果一致。热容测量显示,在tn = 0.47 K以下存在磁性长程序 ;磁热容数据遵循下面的幂律关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信