Generation of continuous production of polymeric nanoparticles via microfluidics for aerosolised localised drug delivery.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Giuseppina Catania, Giulia Guerriero, Naoual Bakrin, Jérémie Pourchez, Ghalia Kaouane, Lara Leclerc, Lionel Augeul, Ragna Haegebaert, Katrien Remaut, David Kryza, Giovanna Lollo
{"title":"Generation of continuous production of polymeric nanoparticles via microfluidics for aerosolised localised drug delivery.","authors":"Giuseppina Catania, Giulia Guerriero, Naoual Bakrin, Jérémie Pourchez, Ghalia Kaouane, Lara Leclerc, Lionel Augeul, Ragna Haegebaert, Katrien Remaut, David Kryza, Giovanna Lollo","doi":"10.1016/j.ijpharm.2025.125532","DOIUrl":null,"url":null,"abstract":"<p><p>Transferring the production of nanoparticles from laboratory batches to large-scale production for preclinical and clinical applications represents a challenge due to difficulties in scaling up formulations and lack of suitable preclinical models for testing. Here, we transpose the production of hyaluronic acid and polyarginine-based nanoparticles encapsulating the platinum-derivative dichloro(1,2 diaminocyclohexane)platinum(II), from conventional bulk method to continuous production using microfluidics. The microfluidic-based drug delivery system (DDS) is then tested in a customised preclinical setup to assess its suitability for pressurised intraperitoneal aerosol chemotherapy (PIPAC), a locoregional chemotherapy used to treat peritoneal carcinomatosis. PIPAC consists of the aerosolization of drugs under pressure using laparoscopy. In our preclinical setup, two clinical aerosol devices, CapnoPen® and TOPOL®, are used in conjunction with syringe pump to achieve the clinically optimal aerosol droplet size range (25-50 μm). Aerosol droplet sizes of 38 and 64 μm are obtained at upstream pressures of 14.7 and 7.4 bar and flow rates of 0.4 and 1.1 mL/s, for CapnoPen® and TOPOL®, respectively. To study the spatial distribution of the aerosol, our preclinical setup is then coupled to an ex-vivo model (inverted porcine urinary bladder) that mimics the physiological peritoneal cavity environment. The smaller droplet size obtained with CapnoPen® provided more homogeneous aerosol distribution in the bladder cavity, crucial for maximising treatment coverage within the peritoneal cavity. Furthermore, stability studies reveal that nanoparticles maintained their physicochemical properties and anticancer activity post-aerosolization. Overall, this study provides a scalable approach for the production of platinum-derivative-loaded polymeric nanoparticles and demonstrates the suitability of this DDS for PIPAC.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125532"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2025.125532","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Transferring the production of nanoparticles from laboratory batches to large-scale production for preclinical and clinical applications represents a challenge due to difficulties in scaling up formulations and lack of suitable preclinical models for testing. Here, we transpose the production of hyaluronic acid and polyarginine-based nanoparticles encapsulating the platinum-derivative dichloro(1,2 diaminocyclohexane)platinum(II), from conventional bulk method to continuous production using microfluidics. The microfluidic-based drug delivery system (DDS) is then tested in a customised preclinical setup to assess its suitability for pressurised intraperitoneal aerosol chemotherapy (PIPAC), a locoregional chemotherapy used to treat peritoneal carcinomatosis. PIPAC consists of the aerosolization of drugs under pressure using laparoscopy. In our preclinical setup, two clinical aerosol devices, CapnoPen® and TOPOL®, are used in conjunction with syringe pump to achieve the clinically optimal aerosol droplet size range (25-50 μm). Aerosol droplet sizes of 38 and 64 μm are obtained at upstream pressures of 14.7 and 7.4 bar and flow rates of 0.4 and 1.1 mL/s, for CapnoPen® and TOPOL®, respectively. To study the spatial distribution of the aerosol, our preclinical setup is then coupled to an ex-vivo model (inverted porcine urinary bladder) that mimics the physiological peritoneal cavity environment. The smaller droplet size obtained with CapnoPen® provided more homogeneous aerosol distribution in the bladder cavity, crucial for maximising treatment coverage within the peritoneal cavity. Furthermore, stability studies reveal that nanoparticles maintained their physicochemical properties and anticancer activity post-aerosolization. Overall, this study provides a scalable approach for the production of platinum-derivative-loaded polymeric nanoparticles and demonstrates the suitability of this DDS for PIPAC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信