{"title":"Gut Microbiota Regulate Lipid Metabolism via the Bile Acid Pathway: Resistance to Hypoxia in Gansu Zokor (Eospalax cansus)","authors":"Maohong Yang, Yingying Zhang, Zhuohang Li, Tianyi Liu, Jianping He, Jingang Li","doi":"10.1111/1749-4877.12971","DOIUrl":null,"url":null,"abstract":"<p>The Gansu zokor (<i>Eospalax cansus</i>), a subterranean rodent endemic to the Loess Plateau of China, exhibits remarkable adaptability to hypoxic environments. While gut microbiota are known to regulate lipid metabolism through bile acid (BA) pathways, this phenomenon has not been investigated in subterranean rodents exposed to hypoxia. This study employed 16SrRNA sequencing, targeted analysis of BA metabolites in colonic contents, and assessments of BA and lipid metabolites alongside molecular analyses in the liver and ileum under conditions of acute and chronic hypoxia in Gansu zokors. The results revealed that hypoxia altered the composition of gut microbiota and BA pools in Gansu zokors. Hypoxia-induced changes increased the abundance of gut microbiota associated with BA metabolism, thereby modulating lipid metabolism via farnesoid X receptor (FXR) signaling in the distal ileum and liver cells. Under acute hypoxia, FXR upregulated lipid synthesis and suppressed fatty acid β-oxidation by downregulating the carnitine palmitoyl-transferase1A (CPT1A) expression. Conversely, during chronic hypoxia, particularly under long-term exposure, FXR reduced lipid synthesis and enhanced fatty acid β-oxidation by upregulating acyl-CoA oxidase (ACOX1) expression. In both hypoxic conditions, FXR facilitated lipoprotein metabolism. In summary, this study elucidates that gut microbiota–mediated BA metabolic pathways contribute to the Gansu zokor's ability to maintain lipid metabolic homeostasis and adaptation to hypoxia.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"20 5","pages":"948-962"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1749-4877.12971","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1749-4877.12971","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Gansu zokor (Eospalax cansus), a subterranean rodent endemic to the Loess Plateau of China, exhibits remarkable adaptability to hypoxic environments. While gut microbiota are known to regulate lipid metabolism through bile acid (BA) pathways, this phenomenon has not been investigated in subterranean rodents exposed to hypoxia. This study employed 16SrRNA sequencing, targeted analysis of BA metabolites in colonic contents, and assessments of BA and lipid metabolites alongside molecular analyses in the liver and ileum under conditions of acute and chronic hypoxia in Gansu zokors. The results revealed that hypoxia altered the composition of gut microbiota and BA pools in Gansu zokors. Hypoxia-induced changes increased the abundance of gut microbiota associated with BA metabolism, thereby modulating lipid metabolism via farnesoid X receptor (FXR) signaling in the distal ileum and liver cells. Under acute hypoxia, FXR upregulated lipid synthesis and suppressed fatty acid β-oxidation by downregulating the carnitine palmitoyl-transferase1A (CPT1A) expression. Conversely, during chronic hypoxia, particularly under long-term exposure, FXR reduced lipid synthesis and enhanced fatty acid β-oxidation by upregulating acyl-CoA oxidase (ACOX1) expression. In both hypoxic conditions, FXR facilitated lipoprotein metabolism. In summary, this study elucidates that gut microbiota–mediated BA metabolic pathways contribute to the Gansu zokor's ability to maintain lipid metabolic homeostasis and adaptation to hypoxia.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations