Differentiating high-grade patterns and predominant subtypes for IASLC grading in invasive pulmonary adenocarcinoma using radiomics and clinical-semantic features.

IF 3.5 2区 医学 Q2 ONCOLOGY
Sunyi Zheng, Jiaxin Liu, Jiping Xie, Wenjia Zhang, Keyi Bian, Jing Liang, Jingxiong Li, Jing Wang, Zhaoxiang Ye, Dongsheng Yue, Xiaonan Cui
{"title":"Differentiating high-grade patterns and predominant subtypes for IASLC grading in invasive pulmonary adenocarcinoma using radiomics and clinical-semantic features.","authors":"Sunyi Zheng, Jiaxin Liu, Jiping Xie, Wenjia Zhang, Keyi Bian, Jing Liang, Jingxiong Li, Jing Wang, Zhaoxiang Ye, Dongsheng Yue, Xiaonan Cui","doi":"10.1186/s40644-025-00864-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The International Association for the Study of Lung Cancer (IASLC) grading system for invasive non-mucinous adenocarcinoma (ADC) incorporates high-grade patterns (HGP) and predominant subtypes (PS). Following the system, this study aimed to explore the feasibility of predicting HGP and PS for IASLC grading.</p><p><strong>Materials and methods: </strong>A total of 529 ADCs from patients who underwent radical surgical resection were randomly divided into training and validation datasets in a 7:3 ratio. A two-step model consisting of two submodels was developed for IASLC grading. One submodel assessed whether the HGP exceeded 20% for ADCs, whereas the other distinguished between lepidic and acinar/papillary PS. The predictions from both submodels determined the final IASLC grades. Two variants of this model using either radiomic or clinical-semantic features were created. Additionally, one-step models that directly assessed IASLC grades using clinical-semantic or radiomic features were developed for comparison. The area under the curve (AUC) was used for model evaluation.</p><p><strong>Results: </strong>The two-step radiomic model achieved the highest AUC values of 0.95, 0.85, 0.96 for grades 1, 2, 3 among models. The two-step models outperformed the one-step models in predicting grades 2 and 3, with AUCs of 0.89 and 0.96 vs. 0.53 and 0.81 for radiomics, and 0.68 and 0.77 vs. 0.44 and 0.63 for clinical-semantics (p < 0.001). Radiomics models showed better AUCs than clinical-semantic models for grade 3 regardless of model steps.</p><p><strong>Conclusions: </strong>Predicting HGP and PS using radiomics can achieve accurate IASLC grading in ADCs. Such a two-step radiomics model may provide precise preoperative diagnosis, thereby supporting treatment planning.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"42"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00864-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The International Association for the Study of Lung Cancer (IASLC) grading system for invasive non-mucinous adenocarcinoma (ADC) incorporates high-grade patterns (HGP) and predominant subtypes (PS). Following the system, this study aimed to explore the feasibility of predicting HGP and PS for IASLC grading.

Materials and methods: A total of 529 ADCs from patients who underwent radical surgical resection were randomly divided into training and validation datasets in a 7:3 ratio. A two-step model consisting of two submodels was developed for IASLC grading. One submodel assessed whether the HGP exceeded 20% for ADCs, whereas the other distinguished between lepidic and acinar/papillary PS. The predictions from both submodels determined the final IASLC grades. Two variants of this model using either radiomic or clinical-semantic features were created. Additionally, one-step models that directly assessed IASLC grades using clinical-semantic or radiomic features were developed for comparison. The area under the curve (AUC) was used for model evaluation.

Results: The two-step radiomic model achieved the highest AUC values of 0.95, 0.85, 0.96 for grades 1, 2, 3 among models. The two-step models outperformed the one-step models in predicting grades 2 and 3, with AUCs of 0.89 and 0.96 vs. 0.53 and 0.81 for radiomics, and 0.68 and 0.77 vs. 0.44 and 0.63 for clinical-semantics (p < 0.001). Radiomics models showed better AUCs than clinical-semantic models for grade 3 regardless of model steps.

Conclusions: Predicting HGP and PS using radiomics can achieve accurate IASLC grading in ADCs. Such a two-step radiomics model may provide precise preoperative diagnosis, thereby supporting treatment planning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信