Precision Probing of O-GalNAc Glycosylation Using Bump-and-Hole Engineering.

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2025-03-26 DOI:10.2533/chimia.2025.146
Abdul Zafar, Benjamin Schumann
{"title":"Precision Probing of O-GalNAc Glycosylation Using Bump-and-Hole Engineering.","authors":"Abdul Zafar, Benjamin Schumann","doi":"10.2533/chimia.2025.146","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation is a profound influencer of glycoprotein function. Glycans have a critical impact on health and disease, yet the tools to study them have trailed behind proteins and nucleic acids. O-GalNAc glycosylation involves the addition of N-acetylgalactosamine (GalNAc) to protein substrates. Dysregulation of O-GalNAc glycosylation is implicated in many pathologies such as cancer. Studying O-GalNAc glycosylation is complicated by the lack of a consensus sequence for initiation and the complex interdependence between a large family of 20 GalNAc transferases (GalNAc-Ts) in human cells. These issues necessitate precise methods of interrogating enzyme function. Herein, we discuss our own advances into the generation of precision tools to study O-GalNAc glycosylation and other glycosylation types. We discuss the use of bump-and-hole engineering to illuminate the roles of individual GalNAc-Ts. Engineering biosynthetic pathways enables cell line-specific uptake of chemical, editable sugars in co-culture settings. We provide an insight into the state-of-the-art in this field.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 3","pages":"146-151"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.146","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycosylation is a profound influencer of glycoprotein function. Glycans have a critical impact on health and disease, yet the tools to study them have trailed behind proteins and nucleic acids. O-GalNAc glycosylation involves the addition of N-acetylgalactosamine (GalNAc) to protein substrates. Dysregulation of O-GalNAc glycosylation is implicated in many pathologies such as cancer. Studying O-GalNAc glycosylation is complicated by the lack of a consensus sequence for initiation and the complex interdependence between a large family of 20 GalNAc transferases (GalNAc-Ts) in human cells. These issues necessitate precise methods of interrogating enzyme function. Herein, we discuss our own advances into the generation of precision tools to study O-GalNAc glycosylation and other glycosylation types. We discuss the use of bump-and-hole engineering to illuminate the roles of individual GalNAc-Ts. Engineering biosynthetic pathways enables cell line-specific uptake of chemical, editable sugars in co-culture settings. We provide an insight into the state-of-the-art in this field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信