Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks.

IF 5.2 1区 生物学 Q1 BIOLOGY
Sebastian Vellmer, Dogu Baran Aydogan, Timo Roine, Alberto Cacciola, Thomas Picht, Lucius S Fekonja
{"title":"Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks.","authors":"Sebastian Vellmer, Dogu Baran Aydogan, Timo Roine, Alberto Cacciola, Thomas Picht, Lucius S Fekonja","doi":"10.1038/s42003-025-07936-w","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning may enhance clinical data analysis but requires large amounts of training data, which are scarce for rare pathologies. While generative neural network models can create realistic synthetic data such as 3D MRI volumes and, thus, augment training datasets, the generation of complex data remains challenging. Fibre orientation distributions (FODs) represent one such complex data type, modelling diffusion as spherical harmonics with stored weights as multiple three-dimensional volumes. We successfully trained an α-WGAN combining a generative adversarial network and a variational autoencoder to generate synthetic FODs, using the Human Connectome Project (HCP) data. Our resulting synthetic FODs produce anatomically accurate fibre bundles and connectomes, with properties matching those from our validation dataset. Our approach extends beyond FODs and could be adapted for generating various types of complex medical imaging data, particularly valuable for augmenting limited clinical datasets.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"512"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07936-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning may enhance clinical data analysis but requires large amounts of training data, which are scarce for rare pathologies. While generative neural network models can create realistic synthetic data such as 3D MRI volumes and, thus, augment training datasets, the generation of complex data remains challenging. Fibre orientation distributions (FODs) represent one such complex data type, modelling diffusion as spherical harmonics with stored weights as multiple three-dimensional volumes. We successfully trained an α-WGAN combining a generative adversarial network and a variational autoencoder to generate synthetic FODs, using the Human Connectome Project (HCP) data. Our resulting synthetic FODs produce anatomically accurate fibre bundles and connectomes, with properties matching those from our validation dataset. Our approach extends beyond FODs and could be adapted for generating various types of complex medical imaging data, particularly valuable for augmenting limited clinical datasets.

利用生成对抗网络合成纤维取向分布数据的扩散MRI GAN。
机器学习可以增强临床数据分析,但需要大量的训练数据,这对于罕见的病理来说是稀缺的。虽然生成式神经网络模型可以创建逼真的合成数据,如3D MRI体积,从而增强训练数据集,但生成复杂数据仍然具有挑战性。纤维取向分布(FODs)代表了这样一种复杂的数据类型,将扩散建模为具有多个三维体积存储权重的球面谐波。我们成功地训练了一个结合生成对抗网络和变分自编码器的α-WGAN,使用人类连接组计划(Human Connectome Project, HCP)数据生成合成FODs。我们得到的合成FODs产生解剖学上精确的纤维束和连接体,其特性与我们验证数据集中的相匹配。我们的方法超越了fod,可用于生成各种类型的复杂医学成像数据,对增加有限的临床数据集特别有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信