Sebastian Vellmer, Dogu Baran Aydogan, Timo Roine, Alberto Cacciola, Thomas Picht, Lucius S Fekonja
{"title":"Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks.","authors":"Sebastian Vellmer, Dogu Baran Aydogan, Timo Roine, Alberto Cacciola, Thomas Picht, Lucius S Fekonja","doi":"10.1038/s42003-025-07936-w","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning may enhance clinical data analysis but requires large amounts of training data, which are scarce for rare pathologies. While generative neural network models can create realistic synthetic data such as 3D MRI volumes and, thus, augment training datasets, the generation of complex data remains challenging. Fibre orientation distributions (FODs) represent one such complex data type, modelling diffusion as spherical harmonics with stored weights as multiple three-dimensional volumes. We successfully trained an α-WGAN combining a generative adversarial network and a variational autoencoder to generate synthetic FODs, using the Human Connectome Project (HCP) data. Our resulting synthetic FODs produce anatomically accurate fibre bundles and connectomes, with properties matching those from our validation dataset. Our approach extends beyond FODs and could be adapted for generating various types of complex medical imaging data, particularly valuable for augmenting limited clinical datasets.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"512"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07936-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning may enhance clinical data analysis but requires large amounts of training data, which are scarce for rare pathologies. While generative neural network models can create realistic synthetic data such as 3D MRI volumes and, thus, augment training datasets, the generation of complex data remains challenging. Fibre orientation distributions (FODs) represent one such complex data type, modelling diffusion as spherical harmonics with stored weights as multiple three-dimensional volumes. We successfully trained an α-WGAN combining a generative adversarial network and a variational autoencoder to generate synthetic FODs, using the Human Connectome Project (HCP) data. Our resulting synthetic FODs produce anatomically accurate fibre bundles and connectomes, with properties matching those from our validation dataset. Our approach extends beyond FODs and could be adapted for generating various types of complex medical imaging data, particularly valuable for augmenting limited clinical datasets.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.