Development and evaluation of a machine learning model for osteoporosis risk prediction in Korean women.

IF 2.4 3区 医学 Q2 OBSTETRICS & GYNECOLOGY
Minkyung Je, Seunghyeon Hwang, Suwon Lee, Yoona Kim
{"title":"Development and evaluation of a machine learning model for osteoporosis risk prediction in Korean women.","authors":"Minkyung Je, Seunghyeon Hwang, Suwon Lee, Yoona Kim","doi":"10.1186/s12905-025-03669-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to develop a machine learning (ML) model for classifying osteoporosis in Korean women based on a large-scale population cohort study. This study also aimed to assess ML model performance compared with traditional osteoporosis screening tools. Furthermore, this study aimed to examine the factors influencing the risk of osteoporosis through variable importance.</p><p><strong>Methods: </strong>Data was collected from 4199 women aged 40-69 years in the baseline survey of the Ansan and Ansung cohort of the Korean Genome and Epidemiology Study. Osteoporosis was set as the dependent variable to develop ML classification models. Independent variables included 122 factors related to osteoporosis risk, such as socio-demographic characteristics, anthropometric parameters, lifestyle factors, reproductive factors, nutrient intakes, diet quality indices, medical history, medication history, family history, biochemical parameters, and genetic factors. The six classification models were developed using ML techniques, including decision tree, random forest, multilayer perceptron, support vector machine, light gradient boosting machine, and extreme gradient boosting (XGBoost). The six ML classification models were compared with two traditional osteoporosis screening tools, including the osteoporosis risk assessment instrument (ORAI) and the osteoporosis self-assessment tool (OST). The ML model performances were evaluated and compared using the confusion matrix and area under the curve (AUC) metrics. Variable importance was assessed using the XGBoost technique to investigate osteoporosis risk factors.</p><p><strong>Results: </strong>The XGBoost model showed the highest performance out of the six ML classification models, with an accuracy of 0.705, precision of 0.664, recall of 0.830, and F1 score of 0.738. Moreover, the XGBoost model showed a higher performance on AUC than ORAI and OST. Variable importance scores were identified for 69 out of the 122 variables associated with osteoporosis risk factors. Age at menopause ranked first in variable importance. Variables of arthritis, physical activities, hypertension, education level, income level; alcohol intake, potassium intake, homeostatic model assessment for insulin resistance; energy intake, vitamin C intake, gout; and dietary inflammatory index ranked in the top 20 out of the 69 variables, using the XGBoost technique.</p><p><strong>Conclusions: </strong>This study found that an XGBoost model can be utilized to classify osteoporosis in Korean women. Age at menopause is a significant factor in osteoporosis risk, followed by arthritis, physical activities, hypertension, and education level.</p>","PeriodicalId":9204,"journal":{"name":"BMC Women's Health","volume":"25 1","pages":"146"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Women's Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12905-025-03669-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The aim of this study was to develop a machine learning (ML) model for classifying osteoporosis in Korean women based on a large-scale population cohort study. This study also aimed to assess ML model performance compared with traditional osteoporosis screening tools. Furthermore, this study aimed to examine the factors influencing the risk of osteoporosis through variable importance.

Methods: Data was collected from 4199 women aged 40-69 years in the baseline survey of the Ansan and Ansung cohort of the Korean Genome and Epidemiology Study. Osteoporosis was set as the dependent variable to develop ML classification models. Independent variables included 122 factors related to osteoporosis risk, such as socio-demographic characteristics, anthropometric parameters, lifestyle factors, reproductive factors, nutrient intakes, diet quality indices, medical history, medication history, family history, biochemical parameters, and genetic factors. The six classification models were developed using ML techniques, including decision tree, random forest, multilayer perceptron, support vector machine, light gradient boosting machine, and extreme gradient boosting (XGBoost). The six ML classification models were compared with two traditional osteoporosis screening tools, including the osteoporosis risk assessment instrument (ORAI) and the osteoporosis self-assessment tool (OST). The ML model performances were evaluated and compared using the confusion matrix and area under the curve (AUC) metrics. Variable importance was assessed using the XGBoost technique to investigate osteoporosis risk factors.

Results: The XGBoost model showed the highest performance out of the six ML classification models, with an accuracy of 0.705, precision of 0.664, recall of 0.830, and F1 score of 0.738. Moreover, the XGBoost model showed a higher performance on AUC than ORAI and OST. Variable importance scores were identified for 69 out of the 122 variables associated with osteoporosis risk factors. Age at menopause ranked first in variable importance. Variables of arthritis, physical activities, hypertension, education level, income level; alcohol intake, potassium intake, homeostatic model assessment for insulin resistance; energy intake, vitamin C intake, gout; and dietary inflammatory index ranked in the top 20 out of the 69 variables, using the XGBoost technique.

Conclusions: This study found that an XGBoost model can be utilized to classify osteoporosis in Korean women. Age at menopause is a significant factor in osteoporosis risk, followed by arthritis, physical activities, hypertension, and education level.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Women's Health
BMC Women's Health OBSTETRICS & GYNECOLOGY-
CiteScore
3.40
自引率
4.00%
发文量
444
审稿时长
>12 weeks
期刊介绍: BMC Women''s Health is an open access, peer-reviewed journal that considers articles on all aspects of the health and wellbeing of adolescent girls and women, with a particular focus on the physical, mental, and emotional health of women in developed and developing nations. The journal welcomes submissions on women''s public health issues, health behaviours, breast cancer, gynecological diseases, mental health and health promotion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信