Wenzhe Yu, Jun Tao, Hongmin Cao, Wanshan Zheng, Beiang Zhang, Yue Zhang, Peiqun Xu, Yiwei Zhang, Xuan Liu, Yinan Wang, Han Cai, Gang Liu, Fan Liu, Haibin Wang, Haiyan Zhao, Indira U Mysorekar, Xiaoqian Hu, Bin Cao
{"title":"The HAVCR1-centric host factor network drives Zika virus vertical transmission.","authors":"Wenzhe Yu, Jun Tao, Hongmin Cao, Wanshan Zheng, Beiang Zhang, Yue Zhang, Peiqun Xu, Yiwei Zhang, Xuan Liu, Yinan Wang, Han Cai, Gang Liu, Fan Liu, Haibin Wang, Haiyan Zhao, Indira U Mysorekar, Xiaoqian Hu, Bin Cao","doi":"10.1016/j.celrep.2025.115464","DOIUrl":null,"url":null,"abstract":"<p><p>Zika virus (ZIKV) vertical transmission results in devastating congenital malformations and pregnancy complications; however, the specific receptor and host factors facilitating ZIKV maternal-fetal transmission remain elusive. Here, we employ a genome-wide CRISPR screening and identify multiple placenta-intrinsic factors modulating ZIKV infection. Our study unveils that hepatitis A virus cellular receptor 1 (HAVCR1) serves as a primary receptor governing ZIKV entry in placental trophoblasts. The GATA3-HAVCR1 axis regulates heterogeneous cell tropism in the placenta. Notably, placenta-specific Havcr1 deletion in mice significantly impairs ZIKV transplacental transmission and associated adverse pregnancy outcomes. Mechanistically, the immunoglobulin variable-like domain of HAVCR1 binds to ZIKV via domain III of envelope protein and virion-associated phosphatidylserine. Proteomic profiling and function analyses reveal that AP2S1 cooperates with HAVCR1 for ZIKV internalization through clathrin-mediated endocytosis. Overall, our work underscores the pivotal role of HAVCR1 in mediating ZIKV vertical transmission and highlights a therapeutic target for alleviating congenital Zika syndrome.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115464"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115464","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zika virus (ZIKV) vertical transmission results in devastating congenital malformations and pregnancy complications; however, the specific receptor and host factors facilitating ZIKV maternal-fetal transmission remain elusive. Here, we employ a genome-wide CRISPR screening and identify multiple placenta-intrinsic factors modulating ZIKV infection. Our study unveils that hepatitis A virus cellular receptor 1 (HAVCR1) serves as a primary receptor governing ZIKV entry in placental trophoblasts. The GATA3-HAVCR1 axis regulates heterogeneous cell tropism in the placenta. Notably, placenta-specific Havcr1 deletion in mice significantly impairs ZIKV transplacental transmission and associated adverse pregnancy outcomes. Mechanistically, the immunoglobulin variable-like domain of HAVCR1 binds to ZIKV via domain III of envelope protein and virion-associated phosphatidylserine. Proteomic profiling and function analyses reveal that AP2S1 cooperates with HAVCR1 for ZIKV internalization through clathrin-mediated endocytosis. Overall, our work underscores the pivotal role of HAVCR1 in mediating ZIKV vertical transmission and highlights a therapeutic target for alleviating congenital Zika syndrome.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.