{"title":"Unveiling transfer RNA modifications of oil palm and their dynamic changes during fruit ripening.","authors":"Dehai Deng, Yichao Qin, Xiuying Lin, Meng Chu, Daizhu Lv, Huan Lin","doi":"10.1186/s12870-025-06426-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The oil palm (Elaeis guineensis) is a crucial agricultural commodity, yielding the highest oil output among oil-bearing crops. Despite its significance, productivity challenges persist due to genetic and environmental factors. This study breaks new ground by mapping tRNA modifications in oil palm, exploring their roles during fruit ripening, an area not extensively studied in non-model crops.</p><p><strong>Results: </strong>Utilizing advanced RNA mass spectrometry techniques, we identified 48 distinct tRNA modifications across 88 sites, alongside 164 genes associated with tRNA modifying enzymes. This comprehensive mapping reveals the decreasing nature of most tRNA modifications during fruit development, except for adenosine 2'-O methylation (Am). It hints at a gradual weakening of protein translation quality control and highlights a unique role for Am during fruit ripening. Additionally, lipidomic analysis tracked 674 lipids in oil palm fruits, indicating a correlation between tRNA modifications and the accumulation of specific lipids.</p><p><strong>Conclusions: </strong>This study mapped tRNA modifications in oil palm for the first time and showed the diversity of dynamic changes in tRNA modifications as the fruits develop.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"398"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06426-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The oil palm (Elaeis guineensis) is a crucial agricultural commodity, yielding the highest oil output among oil-bearing crops. Despite its significance, productivity challenges persist due to genetic and environmental factors. This study breaks new ground by mapping tRNA modifications in oil palm, exploring their roles during fruit ripening, an area not extensively studied in non-model crops.
Results: Utilizing advanced RNA mass spectrometry techniques, we identified 48 distinct tRNA modifications across 88 sites, alongside 164 genes associated with tRNA modifying enzymes. This comprehensive mapping reveals the decreasing nature of most tRNA modifications during fruit development, except for adenosine 2'-O methylation (Am). It hints at a gradual weakening of protein translation quality control and highlights a unique role for Am during fruit ripening. Additionally, lipidomic analysis tracked 674 lipids in oil palm fruits, indicating a correlation between tRNA modifications and the accumulation of specific lipids.
Conclusions: This study mapped tRNA modifications in oil palm for the first time and showed the diversity of dynamic changes in tRNA modifications as the fruits develop.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.