Automatically titrating oxygen system versus constant flow oxygen system during exercise in patients with COPD: a systematic review and meta-analysis.

IF 2.6 3区 医学 Q2 RESPIRATORY SYSTEM
Peijian Wang, Jing Wang, Lijun Ge, Beiyao Gao, Siyuan Wang, Shan Jiang
{"title":"Automatically titrating oxygen system versus constant flow oxygen system during exercise in patients with COPD: a systematic review and meta-analysis.","authors":"Peijian Wang, Jing Wang, Lijun Ge, Beiyao Gao, Siyuan Wang, Shan Jiang","doi":"10.1186/s12890-025-03594-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypoxemia is a common symptom among patients with chronic obstructive pulmonary disease (COPD). The constant flow oxygen system (CFOS) is often insufficient to correct this symptom. The automatically titrating oxygen system (ATOS), a new oxygen therapy mode, remains undetermined in its ability to improve exercise performance more effectively than CFOS in COPD patients. The main objective of this meta-analysis was to explore this issue.</p><p><strong>Methods: </strong>We conducted a thorough search of randomized controlled trials (RCTs) in PubMed, Embase, Web of Science (from inception to 1 November 2024). Study selection, data extraction, and risk of bias assessment were performed independently by two authors. Data synthesis was conducted using Stata software (Version 17.0). The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system was utilized to rate evidence quality.</p><p><strong>Results: </strong>Five eligible studies (n = 120) were included. Compared to CFOS, ATOS was more effective in extending the distance (MD = 180.28 m, 95%CI:133.03 to 227.52) and duration (MD = 237.63 s, 95%CI: 181.18 to 294.07) of endurance shuttle walking test (ESWT). Besides, ATOS could better prolong the percentage time of sustaining targeted SpO<sub>2</sub> (92%-96%) (MD = 29.43%,95%CI:21.15 to 37.71) and relieve dyspnea at isotime (MD = -1.65, 95%CI -3.19 to -0.11) during ESWT.</p><p><strong>Discussion: </strong>ATOS may have more advantages in improving exercise tolerance, sustaining targeted SpO<sub>2</sub>, and ameliorating dyspnea during exercise in COPD patients.</p><p><strong>Clinical trial registration: </strong>The review was registered with PROSPERO (The website is https://www.crd.york.ac.uk/prosp ero/, and the ID is CRD 42024574955) and we didn't make a protocol.</p>","PeriodicalId":9148,"journal":{"name":"BMC Pulmonary Medicine","volume":"25 1","pages":"140"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12890-025-03594-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hypoxemia is a common symptom among patients with chronic obstructive pulmonary disease (COPD). The constant flow oxygen system (CFOS) is often insufficient to correct this symptom. The automatically titrating oxygen system (ATOS), a new oxygen therapy mode, remains undetermined in its ability to improve exercise performance more effectively than CFOS in COPD patients. The main objective of this meta-analysis was to explore this issue.

Methods: We conducted a thorough search of randomized controlled trials (RCTs) in PubMed, Embase, Web of Science (from inception to 1 November 2024). Study selection, data extraction, and risk of bias assessment were performed independently by two authors. Data synthesis was conducted using Stata software (Version 17.0). The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system was utilized to rate evidence quality.

Results: Five eligible studies (n = 120) were included. Compared to CFOS, ATOS was more effective in extending the distance (MD = 180.28 m, 95%CI:133.03 to 227.52) and duration (MD = 237.63 s, 95%CI: 181.18 to 294.07) of endurance shuttle walking test (ESWT). Besides, ATOS could better prolong the percentage time of sustaining targeted SpO2 (92%-96%) (MD = 29.43%,95%CI:21.15 to 37.71) and relieve dyspnea at isotime (MD = -1.65, 95%CI -3.19 to -0.11) during ESWT.

Discussion: ATOS may have more advantages in improving exercise tolerance, sustaining targeted SpO2, and ameliorating dyspnea during exercise in COPD patients.

Clinical trial registration: The review was registered with PROSPERO (The website is https://www.crd.york.ac.uk/prosp ero/, and the ID is CRD 42024574955) and we didn't make a protocol.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Pulmonary Medicine
BMC Pulmonary Medicine RESPIRATORY SYSTEM-
CiteScore
4.40
自引率
3.20%
发文量
423
审稿时长
6-12 weeks
期刊介绍: BMC Pulmonary Medicine is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of pulmonary and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信