Chemical profiling and mechanistic insights into the antibacterial efficacy of Melaleuca cajuputi leaf extract.

IF 3.3 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE
Musa Isah, Mohd Dasuki Sul'ain, Wan-Nor-Amilah Wan Abdul Wahab, Hasmah Abdullah, Shajarahtunnur Jamil, Nordina Syamira, Mahamad Shabudin, Ahmad Naqib Shuid, Wan Rosli Wan Ishak
{"title":"Chemical profiling and mechanistic insights into the antibacterial efficacy of Melaleuca cajuputi leaf extract.","authors":"Musa Isah, Mohd Dasuki Sul'ain, Wan-Nor-Amilah Wan Abdul Wahab, Hasmah Abdullah, Shajarahtunnur Jamil, Nordina Syamira, Mahamad Shabudin, Ahmad Naqib Shuid, Wan Rosli Wan Ishak","doi":"10.1186/s12906-025-04790-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergence of antimicrobial resistance and the prevalence of bacterial infections have prompted the search for novel antimicrobials with diverse therapeutic potential from natural products. Thus, this study investigated the antibacterial efficacy of the leaf extracts of M. cajuputi. Additionally, the chemical composition and the mechanism of action of the most active extract (MAE) were evaluated.</p><p><strong>Methods: </strong>The antibacterial activity of leaf extracts of M. cajuputi was assessed using the broth microdilution assay. Scanning electron microscopy (SEM) was used to investigate the effects of MAE on the morphology of bacterial cells. Meanwhile, the chemical composition of the MAE was analyzed using Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). AutoDock Vina was used for molecular docking analysis to unveil the interactions between the ligands and the active sites of the target bacterial proteins.</p><p><strong>Results: </strong>The crude extracts were obtained through cold maceration. The methanolic extract demonstrated the most significant antibacterial activity, with minimum inhibitory concentration (MIC) values spanning 0.25 mg/mL to 2 mg/mL. After 12 h of treatment with 1 × MIC of the methanolic extract, the bacteria showed discernible morphological alterations, including disrupted cell wall and membrane integrity. Thirty compounds were identified in the MAE and subsequently subjected to molecular docking studies against target bacterial proteins. Amongst the compounds, methylanthracene, cycloisolongifolene, diphenyl imidazole, benzil monohydrazone, and trimethoxybenzoic acid showed pronounced binding affinities towards Klebsiella pneumoniae membrane protein (PDB ID: 5O79), peptide binding protein (PDB ID: 7RJJ), Streptococcus agalactiae cell wall surface anchor (PDB ID: 2XTL), pilin (PDB ID: 3PHS), Staphylococcus aureus transglycosylase (PDB ID: 3VMQ), and penicillin-binding proteins (PDB ID: 3VSK). The binding energy scores for these interactions varied between - 6.0 kcal/mol and - 7.5 kcal/mol. Molecular dynamics simulations validated the stability of these interactions, reinforcing the in vitro findings of cell wall and membrane disruption​.</p><p><strong>Conclusion: </strong>The findings of this study indicated that the methanolic extract of M. cajuputi leaves displayed potent antibacterial activity against Klebsiella pneumoniae, S. agalactiae, and S. aureus. The molecular docking analysis reveals significant binding interactions between the identified compounds and the target bacterial proteins, highlighting the potential of M. cajuputi as a novel source of anti-infectives targeting bacterial infections.</p>","PeriodicalId":9128,"journal":{"name":"BMC Complementary Medicine and Therapies","volume":"25 1","pages":"121"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary Medicine and Therapies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12906-025-04790-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The emergence of antimicrobial resistance and the prevalence of bacterial infections have prompted the search for novel antimicrobials with diverse therapeutic potential from natural products. Thus, this study investigated the antibacterial efficacy of the leaf extracts of M. cajuputi. Additionally, the chemical composition and the mechanism of action of the most active extract (MAE) were evaluated.

Methods: The antibacterial activity of leaf extracts of M. cajuputi was assessed using the broth microdilution assay. Scanning electron microscopy (SEM) was used to investigate the effects of MAE on the morphology of bacterial cells. Meanwhile, the chemical composition of the MAE was analyzed using Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). AutoDock Vina was used for molecular docking analysis to unveil the interactions between the ligands and the active sites of the target bacterial proteins.

Results: The crude extracts were obtained through cold maceration. The methanolic extract demonstrated the most significant antibacterial activity, with minimum inhibitory concentration (MIC) values spanning 0.25 mg/mL to 2 mg/mL. After 12 h of treatment with 1 × MIC of the methanolic extract, the bacteria showed discernible morphological alterations, including disrupted cell wall and membrane integrity. Thirty compounds were identified in the MAE and subsequently subjected to molecular docking studies against target bacterial proteins. Amongst the compounds, methylanthracene, cycloisolongifolene, diphenyl imidazole, benzil monohydrazone, and trimethoxybenzoic acid showed pronounced binding affinities towards Klebsiella pneumoniae membrane protein (PDB ID: 5O79), peptide binding protein (PDB ID: 7RJJ), Streptococcus agalactiae cell wall surface anchor (PDB ID: 2XTL), pilin (PDB ID: 3PHS), Staphylococcus aureus transglycosylase (PDB ID: 3VMQ), and penicillin-binding proteins (PDB ID: 3VSK). The binding energy scores for these interactions varied between - 6.0 kcal/mol and - 7.5 kcal/mol. Molecular dynamics simulations validated the stability of these interactions, reinforcing the in vitro findings of cell wall and membrane disruption​.

Conclusion: The findings of this study indicated that the methanolic extract of M. cajuputi leaves displayed potent antibacterial activity against Klebsiella pneumoniae, S. agalactiae, and S. aureus. The molecular docking analysis reveals significant binding interactions between the identified compounds and the target bacterial proteins, highlighting the potential of M. cajuputi as a novel source of anti-infectives targeting bacterial infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Complementary Medicine and Therapies
BMC Complementary Medicine and Therapies INTEGRATIVE & COMPLEMENTARY MEDICINE-
CiteScore
6.10
自引率
2.60%
发文量
300
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信