{"title":"Monitoring honeybee colonies under imidacloprid exposure based on smart beehive system.","authors":"Yuntao Lu, Yinfa Yan, Zhenguo Liu, Ying Wang, Hongfang Wang, Xuepeng Chi, Xiangting Yan, Baohua Xu, Wei Hong, Shengping Liu","doi":"10.1007/s10646-025-02879-8","DOIUrl":null,"url":null,"abstract":"<p><p>As crucial pollinators, honeybees play a significant role in global crop production. However, substantial honeybee colony losses have been observed in recent years, often associated with pesticide use. Despite numerous studies indicating that pesticide exposure threatens bee survival, reproduction, and pollination capabilities, our understanding of its dynamic impact at the colony level remains limited. In this study, we employed colony monitoring equipment and visual inspections to assess the health dynamics of honeybee colonies (Apis mellifera ligustica) exposed to varying concentrations of imidacloprid. Our findings revealed that both high and sub-lethal concentrations of imidacloprid negatively impacted colony population, brood rearing, foraging activities, colony weight, and temperature regulation. High concentration exposure also led to queen loss. The damage patterns varied with the concentration of imidacloprid exposure. Under low concentration exposure, colonies exhibited progressive sublethal effects, initially affecting foraging, brood care, and food intake, gradually leading to a decline in colony population, weight, and temperature. In contrast, high concentration exposure caused rapid bee mortality, directly impairing various collective activity levels, but in the short term, it reduced exposure opportunities for some bees and larvae. This study enhances our understanding of the differential impacts of imidacloprid concentrations on honeybee colonies and underscores the need for further research at the colony level.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-025-02879-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As crucial pollinators, honeybees play a significant role in global crop production. However, substantial honeybee colony losses have been observed in recent years, often associated with pesticide use. Despite numerous studies indicating that pesticide exposure threatens bee survival, reproduction, and pollination capabilities, our understanding of its dynamic impact at the colony level remains limited. In this study, we employed colony monitoring equipment and visual inspections to assess the health dynamics of honeybee colonies (Apis mellifera ligustica) exposed to varying concentrations of imidacloprid. Our findings revealed that both high and sub-lethal concentrations of imidacloprid negatively impacted colony population, brood rearing, foraging activities, colony weight, and temperature regulation. High concentration exposure also led to queen loss. The damage patterns varied with the concentration of imidacloprid exposure. Under low concentration exposure, colonies exhibited progressive sublethal effects, initially affecting foraging, brood care, and food intake, gradually leading to a decline in colony population, weight, and temperature. In contrast, high concentration exposure caused rapid bee mortality, directly impairing various collective activity levels, but in the short term, it reduced exposure opportunities for some bees and larvae. This study enhances our understanding of the differential impacts of imidacloprid concentrations on honeybee colonies and underscores the need for further research at the colony level.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.