N6-methyladenine identification using deep learning and discriminative feature integration.

IF 2.1 4区 医学 Q3 GENETICS & HEREDITY
Salman Khan, Islam Uddin, Sumaiya Noor, Salman A AlQahtani, Nijad Ahmad
{"title":"N6-methyladenine identification using deep learning and discriminative feature integration.","authors":"Salman Khan, Islam Uddin, Sumaiya Noor, Salman A AlQahtani, Nijad Ahmad","doi":"10.1186/s12920-025-02131-6","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenine (6 mA) is a pivotal DNA modification that plays a crucial role in epigenetic regulation, gene expression, and various biological processes. With advancements in sequencing technologies and computational biology, there is an increasing focus on developing accurate methods for 6 mA site identification to enhance early detection and understand its biological significance. Despite the rapid progress of machine learning in bioinformatics, accurately detecting 6 mA sites remains a challenge due to the limited generalizability and efficiency of existing approaches. In this study, we present Deep-N6mA, a novel Deep Neural Network (DNN) model incorporating optimal hybrid features for precise 6 mA site identification. The proposed framework captures complex patterns from DNA sequences through a comprehensive feature extraction process, leveraging k-mer, Dinucleotide-based Cross Covariance (DCC), Trinucleotide-based Auto Covariance (TAC), Pseudo Single Nucleotide Composition (PseSNC), Pseudo Dinucleotide Composition (PseDNC), and Pseudo Trinucleotide Composition (PseTNC). To optimize computational efficiency and eliminate irrelevant or noisy features, an unsupervised Principal Component Analysis (PCA) algorithm is employed, ensuring the selection of the most informative features. A multilayer DNN serves as the classification algorithm to identify N6-methyladenine sites accurately. The robustness and generalizability of Deep-N6mA were rigorously validated using fivefold cross-validation on two benchmark datasets. Experimental results reveal that Deep-N6mA achieves an average accuracy of 97.70% on the F. vesca dataset and 95.75% on the R. chinensis dataset, outperforming existing methods by 4.12% and 4.55%, respectively. These findings underscore the effectiveness of Deep-N6mA as a reliable tool for early 6 mA site detection, contributing to epigenetic research and advancing the field of computational biology.</p>","PeriodicalId":8915,"journal":{"name":"BMC Medical Genomics","volume":"18 1","pages":"58"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12920-025-02131-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenine (6 mA) is a pivotal DNA modification that plays a crucial role in epigenetic regulation, gene expression, and various biological processes. With advancements in sequencing technologies and computational biology, there is an increasing focus on developing accurate methods for 6 mA site identification to enhance early detection and understand its biological significance. Despite the rapid progress of machine learning in bioinformatics, accurately detecting 6 mA sites remains a challenge due to the limited generalizability and efficiency of existing approaches. In this study, we present Deep-N6mA, a novel Deep Neural Network (DNN) model incorporating optimal hybrid features for precise 6 mA site identification. The proposed framework captures complex patterns from DNA sequences through a comprehensive feature extraction process, leveraging k-mer, Dinucleotide-based Cross Covariance (DCC), Trinucleotide-based Auto Covariance (TAC), Pseudo Single Nucleotide Composition (PseSNC), Pseudo Dinucleotide Composition (PseDNC), and Pseudo Trinucleotide Composition (PseTNC). To optimize computational efficiency and eliminate irrelevant or noisy features, an unsupervised Principal Component Analysis (PCA) algorithm is employed, ensuring the selection of the most informative features. A multilayer DNN serves as the classification algorithm to identify N6-methyladenine sites accurately. The robustness and generalizability of Deep-N6mA were rigorously validated using fivefold cross-validation on two benchmark datasets. Experimental results reveal that Deep-N6mA achieves an average accuracy of 97.70% on the F. vesca dataset and 95.75% on the R. chinensis dataset, outperforming existing methods by 4.12% and 4.55%, respectively. These findings underscore the effectiveness of Deep-N6mA as a reliable tool for early 6 mA site detection, contributing to epigenetic research and advancing the field of computational biology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Genomics
BMC Medical Genomics 医学-遗传学
CiteScore
3.90
自引率
0.00%
发文量
243
审稿时长
3.5 months
期刊介绍: BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信