Effects of working memory training on cognitive flexibility, dendritic spine density and long-term potentiation in female mice.

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Vasiliki Stavroulaki, Lida-Evmorfia Vagiaki, Orestis Nikolidakis, Maria Zafeiri, Maria E Plataki, Kyriaki Sidiropoulou
{"title":"Effects of working memory training on cognitive flexibility, dendritic spine density and long-term potentiation in female mice.","authors":"Vasiliki Stavroulaki, Lida-Evmorfia Vagiaki, Orestis Nikolidakis, Maria Zafeiri, Maria E Plataki, Kyriaki Sidiropoulou","doi":"10.1016/j.bbr.2025.115555","DOIUrl":null,"url":null,"abstract":"<p><p>Working memory (WM) is a cognitive ability that allows the short-term maintenance and manipulation of information for goal-directed behavior. The prefrontal cortex (PFC) and the hippocampus (HPC) are two brain regions implicated in WM task performance. Several studies indicate that training in WM (WMT) can enhance performance in various other cognitive tasks. However, our understanding of the neurobiological changes induced by WMT is very limited. Previous work from our lab showed that WMT enhances synaptic and structural plasticity in the PFC and HPC in male mice. In this study, we investigate the effect of WMT on cognitive flexibility and synaptic properties in PFC and HPC in adult female mice. To this end, female adult mice were split into 3 groups: a) mice that remained in their home cage (naïve), b) mice that performed the alternation task in the T-maze (non-adaptive) and c) mice that were trained in the delayed alternation task for 9 days (adaptive). The delayed alternation task was used for WMT. In one cohort, following the delayed alternation task, all mice were tested in the attention set-shifting (AST) task to measure cognitive flexibility, followed by harvesting of the brains for Golgi-Cox staining to study dendritic spine density. Our results showed that in female mice, there were no differences in AST performance among the three groups tested, however, the latency to make a choice was reduced in the adaptive group. With regards to dendritic spine density, no significant differences were identified in PFC while increased dendritic spine density was found in HPC of the adaptive group, compared to the naïve group. In a second cohort, acute brain slices were prepared after completion of the delayed alternation task to investigate the synaptic properties in the PFC and the HPC. Evoked field excitatory post-synaptic potential (fEPSP) recordings were performed in either PFC or HPC brain slices. Our results show that tetanic-induced long-term potentiation (LTP) in the PFC was not different among the three training groups. In the HPC, theta-burst induced LTP was significantly increased in the adaptive group also compared to the non-adaptive and naïve groups. These results reveal both similarities and differences of WMT on performance in the attention set-shifting task, dendritic spine density and LTP in females, compared to males.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115555"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2025.115555","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Working memory (WM) is a cognitive ability that allows the short-term maintenance and manipulation of information for goal-directed behavior. The prefrontal cortex (PFC) and the hippocampus (HPC) are two brain regions implicated in WM task performance. Several studies indicate that training in WM (WMT) can enhance performance in various other cognitive tasks. However, our understanding of the neurobiological changes induced by WMT is very limited. Previous work from our lab showed that WMT enhances synaptic and structural plasticity in the PFC and HPC in male mice. In this study, we investigate the effect of WMT on cognitive flexibility and synaptic properties in PFC and HPC in adult female mice. To this end, female adult mice were split into 3 groups: a) mice that remained in their home cage (naïve), b) mice that performed the alternation task in the T-maze (non-adaptive) and c) mice that were trained in the delayed alternation task for 9 days (adaptive). The delayed alternation task was used for WMT. In one cohort, following the delayed alternation task, all mice were tested in the attention set-shifting (AST) task to measure cognitive flexibility, followed by harvesting of the brains for Golgi-Cox staining to study dendritic spine density. Our results showed that in female mice, there were no differences in AST performance among the three groups tested, however, the latency to make a choice was reduced in the adaptive group. With regards to dendritic spine density, no significant differences were identified in PFC while increased dendritic spine density was found in HPC of the adaptive group, compared to the naïve group. In a second cohort, acute brain slices were prepared after completion of the delayed alternation task to investigate the synaptic properties in the PFC and the HPC. Evoked field excitatory post-synaptic potential (fEPSP) recordings were performed in either PFC or HPC brain slices. Our results show that tetanic-induced long-term potentiation (LTP) in the PFC was not different among the three training groups. In the HPC, theta-burst induced LTP was significantly increased in the adaptive group also compared to the non-adaptive and naïve groups. These results reveal both similarities and differences of WMT on performance in the attention set-shifting task, dendritic spine density and LTP in females, compared to males.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信