{"title":"Backbone resonance assignments of the CPEB3 [101-200] and CPEB3 [294-410].","authors":"Harunobu Saito, Yujin Lee, Tomoharu Ueno, Naotaka Sekiyama, Masatomo So, Ayako Furukawa, Kenji Sugase","doi":"10.1007/s12104-025-10226-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that plays a pivotal role in the formation of long-term memory. The N-terminal region (residues 1-459) of CPEB3 is a highly aggregative intrinsically disordered region (IDR) that regulates the translation of specific targets, such as AMPA subunits, through mechanisms including liquid-liquid phase separation (LLPS) and the formation of fibrous aggregates. Despite its significance, the underlying mechanisms remain poorly understood. In this study, we present the backbone resonance assignments of residues 101-200 and 294-410 segments of the CPEB3 IDR. In agreement with sequence-based predictions, CPEB3 [101-200] was found to be disordered, whereas two partial α-helices were identified within CPEB3 [294-410].</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-025-10226-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that plays a pivotal role in the formation of long-term memory. The N-terminal region (residues 1-459) of CPEB3 is a highly aggregative intrinsically disordered region (IDR) that regulates the translation of specific targets, such as AMPA subunits, through mechanisms including liquid-liquid phase separation (LLPS) and the formation of fibrous aggregates. Despite its significance, the underlying mechanisms remain poorly understood. In this study, we present the backbone resonance assignments of residues 101-200 and 294-410 segments of the CPEB3 IDR. In agreement with sequence-based predictions, CPEB3 [101-200] was found to be disordered, whereas two partial α-helices were identified within CPEB3 [294-410].
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.