{"title":"Interplay and cooperation between GLI2 and master transcription factors promote progression of esophageal squamous cell carcinoma.","authors":"Yin-Qiao Liu, Ze-Jun Zheng, Wang-Kai Fang, Yan-Shang Li, Chun Li, Min Yang, Dong-Chen Han, Jun-Hua Zhou, Ying-Hua Xie, Yu-Ying Zhang, Zhuo-Ying Kang, Yi-Wei Xu, Jian-Jun Xie","doi":"10.1016/j.ajhg.2025.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>The establishment of gene expression programs that drive cell identity is governed by tightly regulated transcription factors (TFs) that engage in auto- and cross-regulation in a feedforward manner, forming core regulatory circuitries (CRCs). Here, we identify and validate an important interconnected CRC formed by three master TFs-GLI2, TP63, and RUNX1-in esophageal squamous cell carcinoma (ESCC). Furthermore, master TFs co-bind to their own and each other's super-enhancers, forming an interconnected auto-regulatory loop. Mechanistically, these master TFs occupy the majority of ESCC super-enhancers and cooperatively orchestrate the ESCC transcription program. Functionally, GLI2, a master TF, is essential for ESCC viability, migration, invasion, and the growth of xenograft tumors. Moreover, the overexpression of GLI2 is significantly associated with shorter overall survival of patients with ESCC. Downstream, this CRC apparatus coordinately regulates gene expression networks in ESCC, controlling important cancer-promoting pathways, including Hedgehog, glycolysis, and epidermal growth factor receptor signaling pathways. Together, these findings offer significant mechanistic insights into the transcriptional dysregulation in ESCC and recognize GLI2 as a potential therapeutic target and prognostic marker for ESCC. More importantly, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.03.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The establishment of gene expression programs that drive cell identity is governed by tightly regulated transcription factors (TFs) that engage in auto- and cross-regulation in a feedforward manner, forming core regulatory circuitries (CRCs). Here, we identify and validate an important interconnected CRC formed by three master TFs-GLI2, TP63, and RUNX1-in esophageal squamous cell carcinoma (ESCC). Furthermore, master TFs co-bind to their own and each other's super-enhancers, forming an interconnected auto-regulatory loop. Mechanistically, these master TFs occupy the majority of ESCC super-enhancers and cooperatively orchestrate the ESCC transcription program. Functionally, GLI2, a master TF, is essential for ESCC viability, migration, invasion, and the growth of xenograft tumors. Moreover, the overexpression of GLI2 is significantly associated with shorter overall survival of patients with ESCC. Downstream, this CRC apparatus coordinately regulates gene expression networks in ESCC, controlling important cancer-promoting pathways, including Hedgehog, glycolysis, and epidermal growth factor receptor signaling pathways. Together, these findings offer significant mechanistic insights into the transcriptional dysregulation in ESCC and recognize GLI2 as a potential therapeutic target and prognostic marker for ESCC. More importantly, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.