{"title":"Rapid and accurate identification of foodborne bacteria: a combined approach using confocal Raman micro-spectroscopy and explainable machine learning.","authors":"Qiancheng Tu, Miaoyun Li, Zhiyuan Sun, Huimin Niu, Lijun Zhao, Yanxiao Wang, Lingxia Sun, Yanxia Liu, Yaodi Zhu, Gaiming Zhao","doi":"10.1007/s00216-025-05816-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a rapid identification method for foodborne pathogens by combining Raman spectroscopy with explainable machine learning. Spectral data of nine common foodborne pathogens are collected using a laser confocal Raman spectrometer, and their characteristic Raman peaks are identified and analyzed. Key spectral features are extracted using competitive adaptive reweighted sampling (CARS) and the successive projections algorithm (SPA), while t-distributed stochastic neighbor embedding (t-SNE) is employed for visualization. Subsequently, classification models, including support vector machine (SVM) and random forest (RF), are developed, and the optimal model is selected based on classification accuracy (ACC), with the RF model achieving a test accuracy of 98.91%. To enhance the interpretability of the model, Shapley Additive exPlanations (SHAP) analysis is applied to evaluate the contribution of each spectral feature to the classification results, identifying critical Raman shifts significantly influencing pathogen classification. The results demonstrate that CARS-SPA feature selection not only improves the accuracy and efficiency of the classification model but also enhances its transparency and reliability. This study optimizes the workflow for food safety testing, reduces the risk of foodborne diseases, and provides robust technical support for public health and safety.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05816-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a rapid identification method for foodborne pathogens by combining Raman spectroscopy with explainable machine learning. Spectral data of nine common foodborne pathogens are collected using a laser confocal Raman spectrometer, and their characteristic Raman peaks are identified and analyzed. Key spectral features are extracted using competitive adaptive reweighted sampling (CARS) and the successive projections algorithm (SPA), while t-distributed stochastic neighbor embedding (t-SNE) is employed for visualization. Subsequently, classification models, including support vector machine (SVM) and random forest (RF), are developed, and the optimal model is selected based on classification accuracy (ACC), with the RF model achieving a test accuracy of 98.91%. To enhance the interpretability of the model, Shapley Additive exPlanations (SHAP) analysis is applied to evaluate the contribution of each spectral feature to the classification results, identifying critical Raman shifts significantly influencing pathogen classification. The results demonstrate that CARS-SPA feature selection not only improves the accuracy and efficiency of the classification model but also enhances its transparency and reliability. This study optimizes the workflow for food safety testing, reduces the risk of foodborne diseases, and provides robust technical support for public health and safety.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.