Charlotte E. T. Huyghe, Antoine Fages, Fabrizia Ronco, Adrian Indermaur, Frederic D. B. Schedel, Ismael Kimirei, Lawrence Makasa, Patrick Tschopp, Walter Salzburger
{"title":"Metagenomic Insights Into the Dietary Diversity of the Adaptive Radiation of Cichlid Fishes in Lake Tanganyika","authors":"Charlotte E. T. Huyghe, Antoine Fages, Fabrizia Ronco, Adrian Indermaur, Frederic D. B. Schedel, Ismael Kimirei, Lawrence Makasa, Patrick Tschopp, Walter Salzburger","doi":"10.1111/mec.17743","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Diet specialisation is a main driver of diversification in many adaptive radiations. Therefore, identifying diet items is essential to characterise trophic specialisations and to understand the dynamics of dietary adaptations. In this study, we explored the trophic niches of 56 species from the adaptive radiation of cichlid fishes in Lake Tanganyika, encompassing all major phylogenetic lineages and feeding specialisations. We employed a metagenomic sequencing approach to identify the food sources of the investigated species at high taxonomic resolution, sequencing over 400 digestive content samples from wild-caught individuals at around 50 million paired-end read depth per sample. Our analyses revealed Arthropoda, Chordata (fishes), Bacillariophyta and Streptophyta as the primary diet phyla of the Tanganyikan cichlids. Moreover, we confirmed the presence of other food sources and identified taxa not previously documented to be part of the cichlids' diet. Based on their dietary compositions, the Tanganyikan cichlids can be grouped into herbivores, invertivores, piscivores and mixed feeders. Further, we showed that trophic disparity in the radiation is shaped by rapid divergence and documented cases of dietary niche convergence. Diet composition correlated with carbon and nitrogen stable isotope values, gut length, and body morphology. Differences in diet—such as the consumption of diatoms, streptophytes and chlorophytes versus fish and arthropods—were associated with changes in body, upper oral jaw and lower pharyngeal jaw shape. Collectively, this study presents a comprehensive and detailed diet classification of the Tanganyikan cichlids, highlighting the power of metagenomic approaches in delineating dietary adaptations.</p>\n </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17743","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diet specialisation is a main driver of diversification in many adaptive radiations. Therefore, identifying diet items is essential to characterise trophic specialisations and to understand the dynamics of dietary adaptations. In this study, we explored the trophic niches of 56 species from the adaptive radiation of cichlid fishes in Lake Tanganyika, encompassing all major phylogenetic lineages and feeding specialisations. We employed a metagenomic sequencing approach to identify the food sources of the investigated species at high taxonomic resolution, sequencing over 400 digestive content samples from wild-caught individuals at around 50 million paired-end read depth per sample. Our analyses revealed Arthropoda, Chordata (fishes), Bacillariophyta and Streptophyta as the primary diet phyla of the Tanganyikan cichlids. Moreover, we confirmed the presence of other food sources and identified taxa not previously documented to be part of the cichlids' diet. Based on their dietary compositions, the Tanganyikan cichlids can be grouped into herbivores, invertivores, piscivores and mixed feeders. Further, we showed that trophic disparity in the radiation is shaped by rapid divergence and documented cases of dietary niche convergence. Diet composition correlated with carbon and nitrogen stable isotope values, gut length, and body morphology. Differences in diet—such as the consumption of diatoms, streptophytes and chlorophytes versus fish and arthropods—were associated with changes in body, upper oral jaw and lower pharyngeal jaw shape. Collectively, this study presents a comprehensive and detailed diet classification of the Tanganyikan cichlids, highlighting the power of metagenomic approaches in delineating dietary adaptations.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms