In Situ Crosslinking of Tröger Base-Based Membranes with Improved Vanadium Flow Battery Property.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Jiachen Chu, Xiaokang Yang, Mengtao Wang, Jianxin Li, Yunfei Song, Xiaohua Ma
{"title":"In Situ Crosslinking of Tröger Base-Based Membranes with Improved Vanadium Flow Battery Property.","authors":"Jiachen Chu, Xiaokang Yang, Mengtao Wang, Jianxin Li, Yunfei Song, Xiaohua Ma","doi":"10.1002/marc.202401129","DOIUrl":null,"url":null,"abstract":"<p><p>The high conductivity of anion exchange membrane (AEM) remains a great challenge in achieving high-performance vanadium flow batteries. In this work, this is achieved by designing a series of microporous crosslinked quaternary ammonium membranes (QDTTB-Xs), which is synthesized by in situ reacting of iodomethane with a series of novel crosslinked microporous Tröger base membranes (DTTB-Xs) that prepared by condensation of 2, 6 (7)-diamino-triptycene and 2, 6 (7)-13-triamino-triptycene through in situ crosslinking. Compared with linear microporous QDTTB-0, the crosslinked QDTTB-X membranes showed higher conductivity. The QDTTB-35 membrane displays both higher coulombic efficiency and voltage efficiency, and 80% of energy efficiency is realized at 200 mA cm<sup>-2</sup>. Outperforming N117 and other reported anion exchange membranes. This is due to the increased triamino-triptycene molar ratio in the membrane resulting in both higher N<sup>+</sup> concentration and improved micropores concentration. Moreover, positively charged N<sup>+</sup> groups combined with the low swelling ratio also help in restricting the vanadium ions permeation. These results give great perspectives in designing high-performance AEMs for VRFB applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401129"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401129","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The high conductivity of anion exchange membrane (AEM) remains a great challenge in achieving high-performance vanadium flow batteries. In this work, this is achieved by designing a series of microporous crosslinked quaternary ammonium membranes (QDTTB-Xs), which is synthesized by in situ reacting of iodomethane with a series of novel crosslinked microporous Tröger base membranes (DTTB-Xs) that prepared by condensation of 2, 6 (7)-diamino-triptycene and 2, 6 (7)-13-triamino-triptycene through in situ crosslinking. Compared with linear microporous QDTTB-0, the crosslinked QDTTB-X membranes showed higher conductivity. The QDTTB-35 membrane displays both higher coulombic efficiency and voltage efficiency, and 80% of energy efficiency is realized at 200 mA cm-2. Outperforming N117 and other reported anion exchange membranes. This is due to the increased triamino-triptycene molar ratio in the membrane resulting in both higher N+ concentration and improved micropores concentration. Moreover, positively charged N+ groups combined with the low swelling ratio also help in restricting the vanadium ions permeation. These results give great perspectives in designing high-performance AEMs for VRFB applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信