{"title":"COLMARvista: an open source 2D and pseudo-3D NMR spectral processing, visualization, and analysis software in JavaScript.","authors":"Dawei Li, Rafael Brüschweiler","doi":"10.1007/s10858-025-00465-y","DOIUrl":null,"url":null,"abstract":"<p><p>COLMARvista is presented as a new, highly versatile software for the easy and intuitive processing and visual inspection of 2D and pseudo-3D NMR data both for uniformly and non-uniformly sampled datasets. COLMARvista allows fully autonomous processing of spectra, including zero-filling, apodization, water suppression, Fourier transformation, and phase correction. Its full integration with DEEP Picker and Voigt Fitter programs allows the automated deconvolution and reconstruction of the experimental spectra for highly quantitative analysis, from compound concentration determination to the extraction of cross-peak specific relaxation parameters, even for signals affected by significant overlap with other peaks. COLMARvista is based on JavaScript and, hence, it is computer-architecture and operating-system independent including its advanced graphics. It runs on all recent web browsers and does not require a potentially elaborate operating-system dependent installation. COLMARvista may serve as a paradigm also for other software projects to prevent the stockpiling of once powerful legacy software that became frozen in time, thereby ensuring continuing progress of the NMR field and its software for future generations of NMR spectroscopists.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-025-00465-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
COLMARvista is presented as a new, highly versatile software for the easy and intuitive processing and visual inspection of 2D and pseudo-3D NMR data both for uniformly and non-uniformly sampled datasets. COLMARvista allows fully autonomous processing of spectra, including zero-filling, apodization, water suppression, Fourier transformation, and phase correction. Its full integration with DEEP Picker and Voigt Fitter programs allows the automated deconvolution and reconstruction of the experimental spectra for highly quantitative analysis, from compound concentration determination to the extraction of cross-peak specific relaxation parameters, even for signals affected by significant overlap with other peaks. COLMARvista is based on JavaScript and, hence, it is computer-architecture and operating-system independent including its advanced graphics. It runs on all recent web browsers and does not require a potentially elaborate operating-system dependent installation. COLMARvista may serve as a paradigm also for other software projects to prevent the stockpiling of once powerful legacy software that became frozen in time, thereby ensuring continuing progress of the NMR field and its software for future generations of NMR spectroscopists.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.