Jon Gutiérrez-Zaballa, Koldo Basterretxea, Javier Echanobe
{"title":"Balancing Robustness and Efficiency in Embedded DNNs Through Activation Function Selection","authors":"Jon Gutiérrez-Zaballa, Koldo Basterretxea, Javier Echanobe","doi":"10.1049/ell2.70210","DOIUrl":null,"url":null,"abstract":"<p>Machine learning-based embedded systems for safety-critical applications, such as aerospace and autonomous driving, must be robust to perturbations caused by soft errors. As transistor geometries shrink and voltages decrease, modern electronic devices become more susceptible to background radiation, increasing the concern about failures produced by soft errors. The resilience of deep neural networks (DNNs) to these errors depends not only on target device technology but also on model structure and the numerical representation and arithmetic precision of their parameters. Compression techniques like pruning and quantisation, used to reduce memory footprint and computational complexity, alter both model structure and representation, affecting soft error robustness. In this regard, although often overlooked, the choice of activation functions (AFs) impacts not only accuracy and trainability but also compressibility and error resilience. This paper explores the use of bounded AFs to enhance robustness against parameter perturbations, while evaluating their effects on model accuracy, compressibility, and computational load with a technology-agnostic approach. We focus on encoder–decoder convolutional models developed for semantic segmentation of hyperspectral images with application to autonomous driving systems. Experiments are conducted on an AMD-Xilinx's KV260 SoM.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70210","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning-based embedded systems for safety-critical applications, such as aerospace and autonomous driving, must be robust to perturbations caused by soft errors. As transistor geometries shrink and voltages decrease, modern electronic devices become more susceptible to background radiation, increasing the concern about failures produced by soft errors. The resilience of deep neural networks (DNNs) to these errors depends not only on target device technology but also on model structure and the numerical representation and arithmetic precision of their parameters. Compression techniques like pruning and quantisation, used to reduce memory footprint and computational complexity, alter both model structure and representation, affecting soft error robustness. In this regard, although often overlooked, the choice of activation functions (AFs) impacts not only accuracy and trainability but also compressibility and error resilience. This paper explores the use of bounded AFs to enhance robustness against parameter perturbations, while evaluating their effects on model accuracy, compressibility, and computational load with a technology-agnostic approach. We focus on encoder–decoder convolutional models developed for semantic segmentation of hyperspectral images with application to autonomous driving systems. Experiments are conducted on an AMD-Xilinx's KV260 SoM.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO