Effects of Dust Accumulation on the Performance of the Photovoltaic Panels on Buildings: A Case Study

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Abubaker Younis, Mohamed Louzazni, Petru Adrian Cotfas, Daniel Tudor Cotfas
{"title":"Effects of Dust Accumulation on the Performance of the Photovoltaic Panels on Buildings: A Case Study","authors":"Abubaker Younis,&nbsp;Mohamed Louzazni,&nbsp;Petru Adrian Cotfas,&nbsp;Daniel Tudor Cotfas","doi":"10.1155/er/2720932","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study examines the effects of dust accumulation on the performance of photovoltaic (PV) panels in an urban environment through 1 month of field experiments. Three PV panels—clean (P1), lightly soiled (P2), and heavily soiled (P3)—were installed on a rooftop test bed in two configurations: horizontal and latitude-tilted (45° North), using black tar paper and brown cellulose fiberboard as roofing materials. On the reference day, the panels showed minimal performance differences, with discrepancies of 0.37% in maximum power (<i>P</i><sub>max</sub>) and 0.43% in short-circuit current (<i>I</i><sub>sc</sub>). However, dust accumulation led to significant power losses in P3, averaging 23.4% in the horizontal position and 15% when tilted. P2 showed minor losses (1%–3%) throughout. Thermal monitoring revealed that dust raised the front surface temperatures of the soiled panels, while the clean panel exhibited the highest back surface temperatures. The greatest temperature differences occurred in the tilted configuration, with a maximum of 6.03 K on the front surface. Roofing material also influenced thermal behavior, with the black tar paper absorbing more heat than the cellulose fiberboard. The results highlight the importance of regular panel cleaning and optimal tilt angles to minimize dust-related performance losses, providing insights for improving the efficiency of PV systems in built environments.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/2720932","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/2720932","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the effects of dust accumulation on the performance of photovoltaic (PV) panels in an urban environment through 1 month of field experiments. Three PV panels—clean (P1), lightly soiled (P2), and heavily soiled (P3)—were installed on a rooftop test bed in two configurations: horizontal and latitude-tilted (45° North), using black tar paper and brown cellulose fiberboard as roofing materials. On the reference day, the panels showed minimal performance differences, with discrepancies of 0.37% in maximum power (Pmax) and 0.43% in short-circuit current (Isc). However, dust accumulation led to significant power losses in P3, averaging 23.4% in the horizontal position and 15% when tilted. P2 showed minor losses (1%–3%) throughout. Thermal monitoring revealed that dust raised the front surface temperatures of the soiled panels, while the clean panel exhibited the highest back surface temperatures. The greatest temperature differences occurred in the tilted configuration, with a maximum of 6.03 K on the front surface. Roofing material also influenced thermal behavior, with the black tar paper absorbing more heat than the cellulose fiberboard. The results highlight the importance of regular panel cleaning and optimal tilt angles to minimize dust-related performance losses, providing insights for improving the efficiency of PV systems in built environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信