The Intertidal North-South Split: Oceanographic Features and Life History Shape the Phylogeography of Chiton Acanthochitona rubrolineata

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Shaobing Zong, Huijie Liu, Lingjing Xu, Dezhou Yang, Junlong Zhang
{"title":"The Intertidal North-South Split: Oceanographic Features and Life History Shape the Phylogeography of Chiton Acanthochitona rubrolineata","authors":"Shaobing Zong,&nbsp;Huijie Liu,&nbsp;Lingjing Xu,&nbsp;Dezhou Yang,&nbsp;Junlong Zhang","doi":"10.1111/eva.70095","DOIUrl":null,"url":null,"abstract":"<p>The genetic structure and demographic history of marine organisms are shaped by a variety of factors including biological and ecological characteristics, ocean currents, and the palaeogeological effects of sea-level fluctuations. Here we present a comprehensive method combining population genomics, laboratory experiments, and ocean modelling in 13 populations of the chiton <i>Acanthochitona rubrolineata</i> along the coast of China. Based on demographic and population genomic analyses, significant divergence was observed between the Northern and Southern population groups, which are separated by the Yangtze River Estuary. The numerical circulation model simulation showed that gene flow and population connectivity were strongly influenced by ocean currents and the larval dispersal ability of chiton <i>A. rubrolineata</i>. These data thus clearly revealed the presence of two separately evolving lineages in chiton—<i>A. rubrolineata</i> northern and <i>A. rubrolineata</i> southern. Our study highlights that a robust understanding of organisms in the intertidal zone requires a comprehensive consideration of factors that influence gene flow and genetic structure, including the life-history traits, coastal currents, geographic isolation, and habitat suitability. The life history of marine organisms, together with local oceanographic features, could ultimately drive the population divergence and lead to speciation. These findings provide a guideline for future analyses of non-model and potentially threatened species and will aid in the conservation of biodiversity.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic structure and demographic history of marine organisms are shaped by a variety of factors including biological and ecological characteristics, ocean currents, and the palaeogeological effects of sea-level fluctuations. Here we present a comprehensive method combining population genomics, laboratory experiments, and ocean modelling in 13 populations of the chiton Acanthochitona rubrolineata along the coast of China. Based on demographic and population genomic analyses, significant divergence was observed between the Northern and Southern population groups, which are separated by the Yangtze River Estuary. The numerical circulation model simulation showed that gene flow and population connectivity were strongly influenced by ocean currents and the larval dispersal ability of chiton A. rubrolineata. These data thus clearly revealed the presence of two separately evolving lineages in chiton—A. rubrolineata northern and A. rubrolineata southern. Our study highlights that a robust understanding of organisms in the intertidal zone requires a comprehensive consideration of factors that influence gene flow and genetic structure, including the life-history traits, coastal currents, geographic isolation, and habitat suitability. The life history of marine organisms, together with local oceanographic features, could ultimately drive the population divergence and lead to speciation. These findings provide a guideline for future analyses of non-model and potentially threatened species and will aid in the conservation of biodiversity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信