Angus D. Heslop, John L. Ford, Zulfi Jahufer, Rainer W. Hofmann
{"title":"From Root to Shoot: Morphological Evaluation of an International Collection of Red Clover (Trifolium pratense L.) Populations","authors":"Angus D. Heslop, John L. Ford, Zulfi Jahufer, Rainer W. Hofmann","doi":"10.1111/jac.70055","DOIUrl":null,"url":null,"abstract":"<p>Red clover (<i>Trifolium pratense</i> L.) globally is an important pastoral species, used to strengthen pasture mixes and to produce highly nutritious forage. To ensure its continued use and effectiveness, new adaptable cultivars must be developed. Breeders have continuously harnessed diversity to improve the genetic potential of species, and a key part of this is the introduction of new wild germplasm. This material brings an assortment of genetic variation for key morphological traits for crop improvement and adaptation. A row-column experimental design was used to observe trait responses of 15 red clover populations, including 12 germplasm populations, across 3 years. Thirteen above- and below-ground traits were used to evaluate plant yield, plant persistence and root structure. As expected, the biomass production of most of the 12 wild germplasm populations was low in comparison with the cultivar controls. However, key relationships between root structure and both plant persistence and plant production were identified, with plants having either an expansive or compact root system or a mixture of both. This study explored wild germplasm material and highlights the potential genetic variation available within germplasm collections. As this is one of a few publications that look at both below- and above-ground traits, it also highlights the benefits of finding the right balance between root systems. This includes the need to breed plants that are able to manoeuvre between root systems depending on the growing conditions.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"211 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.70055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.70055","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Red clover (Trifolium pratense L.) globally is an important pastoral species, used to strengthen pasture mixes and to produce highly nutritious forage. To ensure its continued use and effectiveness, new adaptable cultivars must be developed. Breeders have continuously harnessed diversity to improve the genetic potential of species, and a key part of this is the introduction of new wild germplasm. This material brings an assortment of genetic variation for key morphological traits for crop improvement and adaptation. A row-column experimental design was used to observe trait responses of 15 red clover populations, including 12 germplasm populations, across 3 years. Thirteen above- and below-ground traits were used to evaluate plant yield, plant persistence and root structure. As expected, the biomass production of most of the 12 wild germplasm populations was low in comparison with the cultivar controls. However, key relationships between root structure and both plant persistence and plant production were identified, with plants having either an expansive or compact root system or a mixture of both. This study explored wild germplasm material and highlights the potential genetic variation available within germplasm collections. As this is one of a few publications that look at both below- and above-ground traits, it also highlights the benefits of finding the right balance between root systems. This includes the need to breed plants that are able to manoeuvre between root systems depending on the growing conditions.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.