Disentangling small-island multilayer networks: Underlying ecological and evolutionary patterns

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-03-31 DOI:10.1002/ecy.70058
Manuel Nogales, Anna Traveset, Heriberto López, Ruben Heleno, Susana Rodríguez-Echeverría, Rafael García, Sandra Hervías-Parejo
{"title":"Disentangling small-island multilayer networks: Underlying ecological and evolutionary patterns","authors":"Manuel Nogales,&nbsp;Anna Traveset,&nbsp;Heriberto López,&nbsp;Ruben Heleno,&nbsp;Susana Rodríguez-Echeverría,&nbsp;Rafael García,&nbsp;Sandra Hervías-Parejo","doi":"10.1002/ecy.70058","DOIUrl":null,"url":null,"abstract":"<p>This study provides a pioneering analysis of the structural and topological characteristics of one of nature's simplest food webs, using the Montaña Clara islet (Canary Islands) as a case study. Applying a multilayer network approach, which assesses multiple interaction types, we examined plant–animal and plant-fungi interactions during two seasons (humid and dry), comparing this oceanic island food web to one from Na Redona, a small continental island in the Balearic Islands. Data were collected through field observations, flower visitation records, fecal analysis, and DNA metabarcoding of root-associated fungi. The study identified 63 animal species and 367 fungal amplicon sequence variants interacting with 13 plant species, five of which (38%) were structurally significant, as indicated by high multilayer versatility values (&gt;0.5). The network structure was modular, with 23 modules primarily representing single ecological functions, and most species were involved in only one interaction type. Notably, 73% of species shifted roles between interaction layers. Results reveal that Montaña Clara's food web is simpler but more modular and versatile than that of the continental island, aligning with island biogeography theory. The study suggests that the unique biodiversity composition of oceanic islands, particularly islets, influences their ecological network structures.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70058","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a pioneering analysis of the structural and topological characteristics of one of nature's simplest food webs, using the Montaña Clara islet (Canary Islands) as a case study. Applying a multilayer network approach, which assesses multiple interaction types, we examined plant–animal and plant-fungi interactions during two seasons (humid and dry), comparing this oceanic island food web to one from Na Redona, a small continental island in the Balearic Islands. Data were collected through field observations, flower visitation records, fecal analysis, and DNA metabarcoding of root-associated fungi. The study identified 63 animal species and 367 fungal amplicon sequence variants interacting with 13 plant species, five of which (38%) were structurally significant, as indicated by high multilayer versatility values (>0.5). The network structure was modular, with 23 modules primarily representing single ecological functions, and most species were involved in only one interaction type. Notably, 73% of species shifted roles between interaction layers. Results reveal that Montaña Clara's food web is simpler but more modular and versatile than that of the continental island, aligning with island biogeography theory. The study suggests that the unique biodiversity composition of oceanic islands, particularly islets, influences their ecological network structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信