{"title":"Influence of Carbon Dioxide on Micro-Cracking in Calcite: An Atomistic Scale Investigation","authors":"Fanyu Wu, Manman Hu","doi":"10.1029/2024JB030896","DOIUrl":null,"url":null,"abstract":"<p>In candidate formations for geological Carbon Capture and Storage (CCS), carbonate minerals (e.g., calcite) are ubiquitously presented. The dynamic process of chemically induced alteration on carbonate-rich reservoirs due to the injection of supercritical <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> holds paramount importance for achieving an economic injectivity and structural integrity of the system. How carbonate rocks undergo deterioration and particularly how microcracks develop in the presence of carbon dioxide remain largely unknown. Here we employ a powerful tool of reactive force field (ReaxFF) molecular dynamics (MD) simulation, investigating into the impact of representative <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> environments on Mode I tensile crack propagation in calcite at micro-scale. Our simulation results demonstrate that (a) both dry and wet <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> environments favor the tensile crack propagation by lowering the fracture toughness of the pre-existing crack; (b) the wet <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> environment promotes the growth velocity of the subcritical crack compared to the dry <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> environment, under the same mechanical loading condition; (c) the interaction between the stressed crack and the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>-water mixture diffusing into the crack opening leads to a small reduction of the system potential energy at an initial stage of subcritical growth; (d) the crack tip appears to be sharper in both dry <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and wet <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> environments, albeit at a lower stress intensity factor than the vacuum case. The atomistic scale findings provide new insights on the process of subcritical calcite cracking induced by a reactive environment via <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> injection, prior to the damage-enhanced dissolution phase.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030896","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030896","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In candidate formations for geological Carbon Capture and Storage (CCS), carbonate minerals (e.g., calcite) are ubiquitously presented. The dynamic process of chemically induced alteration on carbonate-rich reservoirs due to the injection of supercritical holds paramount importance for achieving an economic injectivity and structural integrity of the system. How carbonate rocks undergo deterioration and particularly how microcracks develop in the presence of carbon dioxide remain largely unknown. Here we employ a powerful tool of reactive force field (ReaxFF) molecular dynamics (MD) simulation, investigating into the impact of representative environments on Mode I tensile crack propagation in calcite at micro-scale. Our simulation results demonstrate that (a) both dry and wet environments favor the tensile crack propagation by lowering the fracture toughness of the pre-existing crack; (b) the wet environment promotes the growth velocity of the subcritical crack compared to the dry environment, under the same mechanical loading condition; (c) the interaction between the stressed crack and the -water mixture diffusing into the crack opening leads to a small reduction of the system potential energy at an initial stage of subcritical growth; (d) the crack tip appears to be sharper in both dry and wet environments, albeit at a lower stress intensity factor than the vacuum case. The atomistic scale findings provide new insights on the process of subcritical calcite cracking induced by a reactive environment via injection, prior to the damage-enhanced dissolution phase.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.