Analysis of xyloglucan metabolism mutants highlights the prominent role of xylose cleavage in seed dormancy

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Hiromi Suzuki, Parisa Savane, Lucile Marion-Poll, Julien Sechet, Anne Frey, Adeline Berger, Katia Belcram, Nero Borrega, Mitsunori Seo, Aline Voxeur, Grégory Mouille, Annie Marion-Poll
{"title":"Analysis of xyloglucan metabolism mutants highlights the prominent role of xylose cleavage in seed dormancy","authors":"Hiromi Suzuki,&nbsp;Parisa Savane,&nbsp;Lucile Marion-Poll,&nbsp;Julien Sechet,&nbsp;Anne Frey,&nbsp;Adeline Berger,&nbsp;Katia Belcram,&nbsp;Nero Borrega,&nbsp;Mitsunori Seo,&nbsp;Aline Voxeur,&nbsp;Grégory Mouille,&nbsp;Annie Marion-Poll","doi":"10.1111/tpj.70063","DOIUrl":null,"url":null,"abstract":"<p>Seed dormancy is an adaptive trait that delays germination until environmental conditions become favorable for seedling survival and growth. Germination has been shown to depend on the mechanical resistance strength of the covering layers (testa and endosperm) that counteracts the growth force of the embryo. Cell wall remodeling is essential in the regulation of germination processes. In <i>Arabidopsis thaliana</i>, the side chain trimming of xyloglucans (XyG), the major hemicellulose in cell walls, by the apoplastic XYLOSIDASE1 (XYL1), has been previously shown to regulate XyG side chain length and seed dormancy. To investigate to what extent side chain complexity impacts on cell wall mechanical properties and regulates seed germination, <i>xyl1</i> mutations were combined here with mutations in the two other glycosidases, the fucosidase AXY8 and the beta-galactosidase BGAL10. Analysis of germination phenotypes in <i>axy8 bgal10 xyl1</i> and in several XyG biosynthesis mutants did not show any link between dormancy depth and side chain length. The very specific effect of <i>xyl1</i> on seed dormancy in single and multiple mutants was clearly correlated with alterations in XyG intracellular localization, together with release and oxidation of free oligosaccharides (XGO). Accumulation of oxidized XGO could negatively impact cell wall remodeling by impairing remobilization and polarized secretion in cell walls, thus reducing growth anisotropy in elongating organs and modifying mechanical characteristics in seed tissues.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70063","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seed dormancy is an adaptive trait that delays germination until environmental conditions become favorable for seedling survival and growth. Germination has been shown to depend on the mechanical resistance strength of the covering layers (testa and endosperm) that counteracts the growth force of the embryo. Cell wall remodeling is essential in the regulation of germination processes. In Arabidopsis thaliana, the side chain trimming of xyloglucans (XyG), the major hemicellulose in cell walls, by the apoplastic XYLOSIDASE1 (XYL1), has been previously shown to regulate XyG side chain length and seed dormancy. To investigate to what extent side chain complexity impacts on cell wall mechanical properties and regulates seed germination, xyl1 mutations were combined here with mutations in the two other glycosidases, the fucosidase AXY8 and the beta-galactosidase BGAL10. Analysis of germination phenotypes in axy8 bgal10 xyl1 and in several XyG biosynthesis mutants did not show any link between dormancy depth and side chain length. The very specific effect of xyl1 on seed dormancy in single and multiple mutants was clearly correlated with alterations in XyG intracellular localization, together with release and oxidation of free oligosaccharides (XGO). Accumulation of oxidized XGO could negatively impact cell wall remodeling by impairing remobilization and polarized secretion in cell walls, thus reducing growth anisotropy in elongating organs and modifying mechanical characteristics in seed tissues.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信