E. Contreras, W. Sager, V. Spiess, N. Fekete, B. Wu, H. Zhou
{"title":"Seismic Stratigraphy of Valdivia Bank, South Atlantic and Implications for Oceanic Plateau Evolution, Sedimentation, and Thermal Rejuvenation","authors":"E. Contreras, W. Sager, V. Spiess, N. Fekete, B. Wu, H. Zhou","doi":"10.1029/2024GC011833","DOIUrl":null,"url":null,"abstract":"<p>Valdivia Bank (VB) is an oceanic plateau in the South Atlantic that formed from hotspot-ridge volcanism during the Late Cretaceous at the Mid-Atlantic Ridge (MAR). It is part of Walvis Ridge (WR), a quasi-linear seamount chain extending from offshore Namibia to Tristan da Cunha and Gough Islands. To understand Valdivia Bank evolution, we interpret the seismic stratigraphy from multichannel seismic data paired with coring results from International Ocean Discovery Program (IODP) Expedition 391, which recovered mostly pelagic nannofossil ooze and chalks. The seismic section can be divided into three seismic units (SU), a lower transparent interval which is faulted and conforms to basement, a middle, moderate to high amplitude interval which is thick in local depocenters such as rifts, and an upper, subparallel transparent interval. Notable features include regional unconformities, dipping clinoforms, mass transport and contourite deposits, and volcanic structures. Additionally, three infilled rifts are observed across the plateau. Our analysis implies that following a period of sedimentation in the Campanian, the edifice was faulted through the Paleocene, coinciding with a South Atlantic tectonic reorganization. Local depocenters formed as a result of rifting. Subsequently, the plateau experienced thermal rejuvenation and regional uplift during the Eocene. Volcanic mounds were emplaced atop Cretaceous sediments and intrusives were emplaced within the sediments. During the Cenozoic, sedimentation was punctuated, likely in response to changes in the carbonate compensation depth and bottom current intensification. VB sedimentation was complex and largely influenced by the paleoceanographic context of the plateau, as well as thermal rejuvenation and tectonism.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011833","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011833","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Valdivia Bank (VB) is an oceanic plateau in the South Atlantic that formed from hotspot-ridge volcanism during the Late Cretaceous at the Mid-Atlantic Ridge (MAR). It is part of Walvis Ridge (WR), a quasi-linear seamount chain extending from offshore Namibia to Tristan da Cunha and Gough Islands. To understand Valdivia Bank evolution, we interpret the seismic stratigraphy from multichannel seismic data paired with coring results from International Ocean Discovery Program (IODP) Expedition 391, which recovered mostly pelagic nannofossil ooze and chalks. The seismic section can be divided into three seismic units (SU), a lower transparent interval which is faulted and conforms to basement, a middle, moderate to high amplitude interval which is thick in local depocenters such as rifts, and an upper, subparallel transparent interval. Notable features include regional unconformities, dipping clinoforms, mass transport and contourite deposits, and volcanic structures. Additionally, three infilled rifts are observed across the plateau. Our analysis implies that following a period of sedimentation in the Campanian, the edifice was faulted through the Paleocene, coinciding with a South Atlantic tectonic reorganization. Local depocenters formed as a result of rifting. Subsequently, the plateau experienced thermal rejuvenation and regional uplift during the Eocene. Volcanic mounds were emplaced atop Cretaceous sediments and intrusives were emplaced within the sediments. During the Cenozoic, sedimentation was punctuated, likely in response to changes in the carbonate compensation depth and bottom current intensification. VB sedimentation was complex and largely influenced by the paleoceanographic context of the plateau, as well as thermal rejuvenation and tectonism.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.