Genetic Basis of Reproductive Isolation in Torrey Pine (Pinus torreyana Parry): Insights From Hybridization and Adaptation

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Lionel N. Di Santo, Alayna Mead, Jessica W. Wright, Jill A. Hamilton
{"title":"Genetic Basis of Reproductive Isolation in Torrey Pine (Pinus torreyana Parry): Insights From Hybridization and Adaptation","authors":"Lionel N. Di Santo,&nbsp;Alayna Mead,&nbsp;Jessica W. Wright,&nbsp;Jill A. Hamilton","doi":"10.1111/eva.70094","DOIUrl":null,"url":null,"abstract":"<p>Tree species are often locally adapted to their environments, but the extent to which environmental adaptation contributes to incipient speciation is unclear. One of the rarest pines in the world, Torrey pine (<i>Pinus torreyana</i> Parry), persists naturally across one island and one mainland population in southern California. The two populations are morphologically and genetically differentiated but experience some connectivity, making it an ideal system for assessing the evolution of reproductive isolation. Previous work has found evidence of heterosis in F1 mainland-island hybrids, suggesting genetic rescue could be beneficial in the absence of reproductive barriers. Using ddRADseq and GWAS for a common garden experiment of island, mainland, and F1 individuals, we identified candidate loci for environmentally driven reproductive isolation, their function, and their relationship to fitness proxies. By simulating neutral evolution and admixture between the two populations, we identified loci that exhibited reduced heterozygosity in the F1s, evidence of selection against admixture. SNPs with reduced F1 heterozygosity were enriched for growth and pollination functions, suggesting genetic variants that could be involved in the evolution of reproductive barriers between populations. One locus with reduced F1 heterozygosity exhibited strong associations with growth and reproductive fitness proxies in the common garden, with the mainland allele conferring increased fitness. If this locus experiences divergent selection in the two natural populations, it could promote their reproductive isolation. Finally, although hybridization largely reduced allele fixation in the F1s initially, indicating heterosis is likely due to the masking of deleterious alleles, the emergence of reproductive isolation between populations may diminish the longer-term benefits of genetic rescue in F2 or advanced-generation hybrids. As Torrey pine is a candidate for interpopulation genetic rescue, caution is warranted where longer-term gene flow between diverged populations may result in reduced fitness if barriers have evolved.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tree species are often locally adapted to their environments, but the extent to which environmental adaptation contributes to incipient speciation is unclear. One of the rarest pines in the world, Torrey pine (Pinus torreyana Parry), persists naturally across one island and one mainland population in southern California. The two populations are morphologically and genetically differentiated but experience some connectivity, making it an ideal system for assessing the evolution of reproductive isolation. Previous work has found evidence of heterosis in F1 mainland-island hybrids, suggesting genetic rescue could be beneficial in the absence of reproductive barriers. Using ddRADseq and GWAS for a common garden experiment of island, mainland, and F1 individuals, we identified candidate loci for environmentally driven reproductive isolation, their function, and their relationship to fitness proxies. By simulating neutral evolution and admixture between the two populations, we identified loci that exhibited reduced heterozygosity in the F1s, evidence of selection against admixture. SNPs with reduced F1 heterozygosity were enriched for growth and pollination functions, suggesting genetic variants that could be involved in the evolution of reproductive barriers between populations. One locus with reduced F1 heterozygosity exhibited strong associations with growth and reproductive fitness proxies in the common garden, with the mainland allele conferring increased fitness. If this locus experiences divergent selection in the two natural populations, it could promote their reproductive isolation. Finally, although hybridization largely reduced allele fixation in the F1s initially, indicating heterosis is likely due to the masking of deleterious alleles, the emergence of reproductive isolation between populations may diminish the longer-term benefits of genetic rescue in F2 or advanced-generation hybrids. As Torrey pine is a candidate for interpopulation genetic rescue, caution is warranted where longer-term gene flow between diverged populations may result in reduced fitness if barriers have evolved.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信