Palmyra Palm Shell (Borassus flabellifer) Properties Part 1: Insights Into Its Physical and Chemical Properties

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Md Atiqur Rahman, Mamadou Ndiaye, Bartosz Weclawski
{"title":"Palmyra Palm Shell (Borassus flabellifer) Properties Part 1: Insights Into Its Physical and Chemical Properties","authors":"Md Atiqur Rahman,&nbsp;Mamadou Ndiaye,&nbsp;Bartosz Weclawski","doi":"10.1002/eng2.70066","DOIUrl":null,"url":null,"abstract":"<p>Bio-based materials are gaining importance in engineering due to their availability, recyclability, and eco-friendliness. Among them, <i>Borassus flabellifer</i> (Palmyra palm) fruit shell (husk) is an underutilized biofiber in Bangladesh, currently limited to disposal or waste-to-energy applications despite its potential for high-value uses. This study explores the physical, chemical, and microstructural properties of untreated <i>Borassus flabellifer</i> husk to evaluate its suitability as a sustainable material for engineering applications. The physical properties, including density, water absorption, moisture regain, and porosity, were assessed according to BS EN ISO 1183-1:2019, ASTM D750, ASTM D2654-22, and ISO 2738 standards. The husk was found to be significantly lighter than its fine as well as coarse fibers and conventional natural fibers like jute, flax, and sisal, making it ideal for lightweight engineering designs. FTIR analysis (qualitatively) revealed the presence of cellulose, hemicellulose, and lignin, which contribute to its mechanical strength, water absorption, and thermal insulation properties, respectively. SEM analysis further demonstrated a cross-linked, porous, and tubular fiber structure, enhancing its thermal and sound insulation features. The findings suggest untreated <i>Borassus flabellifer</i> husk can be a promising alternative for applications requiring lightweight, thermally, and acoustically insulating materials. While its moisture and water resistance outperform some biofibers, chemical treatments could enhance these properties further. To maximize its potential, efficient collection and supply chain systems are essential for industrial-scale production. Harnessing this abundant resource could support sustainable development while encouraging the cultivation and preservation of <i>Borassus flabellifer</i> trees.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-based materials are gaining importance in engineering due to their availability, recyclability, and eco-friendliness. Among them, Borassus flabellifer (Palmyra palm) fruit shell (husk) is an underutilized biofiber in Bangladesh, currently limited to disposal or waste-to-energy applications despite its potential for high-value uses. This study explores the physical, chemical, and microstructural properties of untreated Borassus flabellifer husk to evaluate its suitability as a sustainable material for engineering applications. The physical properties, including density, water absorption, moisture regain, and porosity, were assessed according to BS EN ISO 1183-1:2019, ASTM D750, ASTM D2654-22, and ISO 2738 standards. The husk was found to be significantly lighter than its fine as well as coarse fibers and conventional natural fibers like jute, flax, and sisal, making it ideal for lightweight engineering designs. FTIR analysis (qualitatively) revealed the presence of cellulose, hemicellulose, and lignin, which contribute to its mechanical strength, water absorption, and thermal insulation properties, respectively. SEM analysis further demonstrated a cross-linked, porous, and tubular fiber structure, enhancing its thermal and sound insulation features. The findings suggest untreated Borassus flabellifer husk can be a promising alternative for applications requiring lightweight, thermally, and acoustically insulating materials. While its moisture and water resistance outperform some biofibers, chemical treatments could enhance these properties further. To maximize its potential, efficient collection and supply chain systems are essential for industrial-scale production. Harnessing this abundant resource could support sustainable development while encouraging the cultivation and preservation of Borassus flabellifer trees.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信