Importance of Longwave Radiative Forcing by Icy Clouds in Maintaining Miocene High-Latitude Warmth

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xiaoqing Liu, Ashley Griffin, Muge Komurcu, Matthew Huber
{"title":"Importance of Longwave Radiative Forcing by Icy Clouds in Maintaining Miocene High-Latitude Warmth","authors":"Xiaoqing Liu,&nbsp;Ashley Griffin,&nbsp;Muge Komurcu,&nbsp;Matthew Huber","doi":"10.1029/2024GL111831","DOIUrl":null,"url":null,"abstract":"<p>During the early-to-middle Miocene, global mean surface temperature (GMST) was approximately 8°C warmer than preindustrial, with a greater temperature increase in polar regions than the tropics. However, existing Miocene simulations underestimate this warmth, particularly in northern high latitudes. To address this discrepancy, we investigate the potential role of cloud phase. Using the Community Earth System Model, we conduct a paleoclimate sensitivity study focused on modifying ice nucleation and cloud phase partitioning schemes. These modifications increase the GMST, with a strong temperature rise in high latitudes and a muted increase in the tropics. These increases are driven by enhanced longwave cloud forcing, resulting from increased ice cloud amounts and cloud water content, and are amplified by water vapor and lapse rate feedbacks in the Arctic. Our study highlights that the improved parameterizations of cloud phase processes enhance models' capability to simulate Miocene high-latitude warmth and potentially other warm climates.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111831","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111831","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During the early-to-middle Miocene, global mean surface temperature (GMST) was approximately 8°C warmer than preindustrial, with a greater temperature increase in polar regions than the tropics. However, existing Miocene simulations underestimate this warmth, particularly in northern high latitudes. To address this discrepancy, we investigate the potential role of cloud phase. Using the Community Earth System Model, we conduct a paleoclimate sensitivity study focused on modifying ice nucleation and cloud phase partitioning schemes. These modifications increase the GMST, with a strong temperature rise in high latitudes and a muted increase in the tropics. These increases are driven by enhanced longwave cloud forcing, resulting from increased ice cloud amounts and cloud water content, and are amplified by water vapor and lapse rate feedbacks in the Arctic. Our study highlights that the improved parameterizations of cloud phase processes enhance models' capability to simulate Miocene high-latitude warmth and potentially other warm climates.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信