Causes of the Abnormally Strong Easterly Phase of the Mesopause Semiannual Oscillation During the March Equinox of 2023 Revealed by a New Reanalysis Data Covering the Entire Middle Atmosphere
Kaoru Sato, Dai Koshin, Jose Suclupe, Jorge L. Chau, Lourivaldo M. Lima, Guozhu Li, S. Vijaya Bhaskara Rao, M. Venkat Ratnam, Rodolfo Rodriguez, Danny Scipion
{"title":"Causes of the Abnormally Strong Easterly Phase of the Mesopause Semiannual Oscillation During the March Equinox of 2023 Revealed by a New Reanalysis Data Covering the Entire Middle Atmosphere","authors":"Kaoru Sato, Dai Koshin, Jose Suclupe, Jorge L. Chau, Lourivaldo M. Lima, Guozhu Li, S. Vijaya Bhaskara Rao, M. Venkat Ratnam, Rodolfo Rodriguez, Danny Scipion","doi":"10.1029/2025GL114658","DOIUrl":null,"url":null,"abstract":"<p>During the March equinox of 2023, a strong easterly wind of ∼80 m s<sup>−1</sup> appeared at an altitude of ∼82 km in the equatorial upper mesosphere, which is regarded as an enhancement of the mesopause semi-annual oscillation. In this study, a new reanalysis data available up to 110 km was used to investigate its momentum budget. The strong easterly acceleration was due to a similar contribution from resolved waves and parameterized gravity waves, but largely counteracted by an upward advection of westerly momentum. The significant anomaly in the mean winds was not restricted to the 82 km height, but also included strong westerly winds (∼50 m s<sup>−1</sup>) at 65 km and easterly winds (∼40 m s<sup>−1</sup>) at 42 km. The stratospheric quasi-biennial oscillation was westerly. The mean wind intensification at each height is explained by the acceleration due to upward propagating waves, which do not suffer from critical filtering below.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL114658","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL114658","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During the March equinox of 2023, a strong easterly wind of ∼80 m s−1 appeared at an altitude of ∼82 km in the equatorial upper mesosphere, which is regarded as an enhancement of the mesopause semi-annual oscillation. In this study, a new reanalysis data available up to 110 km was used to investigate its momentum budget. The strong easterly acceleration was due to a similar contribution from resolved waves and parameterized gravity waves, but largely counteracted by an upward advection of westerly momentum. The significant anomaly in the mean winds was not restricted to the 82 km height, but also included strong westerly winds (∼50 m s−1) at 65 km and easterly winds (∼40 m s−1) at 42 km. The stratospheric quasi-biennial oscillation was westerly. The mean wind intensification at each height is explained by the acceleration due to upward propagating waves, which do not suffer from critical filtering below.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.