Role of SIRT7 in Prostate Cancer Progression: New Insight Into Potential Therapeutic Target

IF 2.9 2区 医学 Q2 ONCOLOGY
Cancer Medicine Pub Date : 2025-04-01 DOI:10.1002/cam4.70786
Jiale Zhang, Chenxin Liu, Wenting Luo, Baoqing Sun
{"title":"Role of SIRT7 in Prostate Cancer Progression: New Insight Into Potential Therapeutic Target","authors":"Jiale Zhang,&nbsp;Chenxin Liu,&nbsp;Wenting Luo,&nbsp;Baoqing Sun","doi":"10.1002/cam4.70786","DOIUrl":null,"url":null,"abstract":"<p>Prostate cancer (PCa) is the second most common cancer in men worldwide, and understanding its molecular mechanisms is crucial for developing effective treatment strategies. SIRT7, a NAD+-dependent histone deacetylase, has emerged as a key regulator in PCa progression due to its roles in chromatin remodeling, DNA repair, and transcriptional regulation. Analysis of 492 PCa samples from The Cancer Genome Atlas (TCGA) via cBioPortal revealed that high SIRT7 expression is associated with poor prognosis in PCa patients. Mechanistically, SIRT7 deacetylates histone H3 at lysine 18 (H3K18Ac), a marker associated with aggressive tumors, suppressing tumor suppressor genes and promoting cancer cell proliferation and survival. Epithelial-mesenchymal transition (EMT) is a cellular biological process in which epithelial cells undergo specific molecular and morphological changes to transform into cells with characteristics of mesenchymal cells. SIRT7 also regulates EMT, and inhibiting SIRT7 in PCa cell lines reduces cell migration and invasion, highlighting its potential as a therapeutic target. In summary, the clinical significance of SIRT7 expression in PCa requires further research to elucidate its mechanisms. Developing specific inhibitors targeting SIRT7's deacetylase activity is a promising therapeutic strategy. SIRT7 plays a crucial role in regulating biological processes such as cell proliferation, cell cycle, and apoptosis in PCa through its epigenetic control of gene expression and maintenance of genomic stability. Therefore, SIRT7 may be a potential therapeutic target for PCa, and its expression could have prognostic value for PCa patients, providing important guidance for clinical monitoring and diagnosis by physicians.</p>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":"14 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cam4.70786","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70786","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer (PCa) is the second most common cancer in men worldwide, and understanding its molecular mechanisms is crucial for developing effective treatment strategies. SIRT7, a NAD+-dependent histone deacetylase, has emerged as a key regulator in PCa progression due to its roles in chromatin remodeling, DNA repair, and transcriptional regulation. Analysis of 492 PCa samples from The Cancer Genome Atlas (TCGA) via cBioPortal revealed that high SIRT7 expression is associated with poor prognosis in PCa patients. Mechanistically, SIRT7 deacetylates histone H3 at lysine 18 (H3K18Ac), a marker associated with aggressive tumors, suppressing tumor suppressor genes and promoting cancer cell proliferation and survival. Epithelial-mesenchymal transition (EMT) is a cellular biological process in which epithelial cells undergo specific molecular and morphological changes to transform into cells with characteristics of mesenchymal cells. SIRT7 also regulates EMT, and inhibiting SIRT7 in PCa cell lines reduces cell migration and invasion, highlighting its potential as a therapeutic target. In summary, the clinical significance of SIRT7 expression in PCa requires further research to elucidate its mechanisms. Developing specific inhibitors targeting SIRT7's deacetylase activity is a promising therapeutic strategy. SIRT7 plays a crucial role in regulating biological processes such as cell proliferation, cell cycle, and apoptosis in PCa through its epigenetic control of gene expression and maintenance of genomic stability. Therefore, SIRT7 may be a potential therapeutic target for PCa, and its expression could have prognostic value for PCa patients, providing important guidance for clinical monitoring and diagnosis by physicians.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Medicine
Cancer Medicine ONCOLOGY-
CiteScore
5.50
自引率
2.50%
发文量
907
审稿时长
19 weeks
期刊介绍: Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas: Clinical Cancer Research Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations Cancer Biology: Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery. Cancer Prevention: Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach. Bioinformatics: Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers. Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信