Long-Distance Corridors Facilitate Asian Elephant Adaptation to Climate Change 长距离廊道有助于亚洲象适应气候变化

Xue Lu, Jie Wang, Zhongde Huang, Zhou Fang, Maroof Ali, Anam Ashraf, Shengdong Yuan, Yang Bai
{"title":"Long-Distance Corridors Facilitate Asian Elephant Adaptation to Climate Change\n 长距离廊道有助于亚洲象适应气候变化","authors":"Xue Lu,&nbsp;Jie Wang,&nbsp;Zhongde Huang,&nbsp;Zhou Fang,&nbsp;Maroof Ali,&nbsp;Anam Ashraf,&nbsp;Shengdong Yuan,&nbsp;Yang Bai","doi":"10.1002/inc3.70001","DOIUrl":null,"url":null,"abstract":"<p>Amid ongoing habitat degradation and fragmentation, along with the disruption of traditional moving routes, the Kunming-Montreal Global Biodiversity Framework underscores the urgent need to enhance species connectivity to improve their adaptability to climate change. Recent instances of long-distance movements by Asian elephants (<i>Elephas maximus</i>) have raised concerns about the potential for such events to become more frequent under future climate scenarios. A landscape adaptation strategy is urgently needed to improve the connectivity and integrity of Asian elephant habitats to meet their long-distance movement requirements. However, large-scale ecological networks for Asian elephants that incorporate long-distance corridors remain lacking. This study employs species distribution models and minimum resistance models to construct current and future multi-scenario ecological networks, aiming to elucidate key features of climate adaptability and priority corridor strategies for Asian elephants. Our findings indicate that long-distance corridors identified under future climate scenarios play an integral part in maintaining connectivity within the priority network. The study identifies 162 priority long-distance corridors, accounting for 25.5% of the overall network, whose lengths and importance are expected to increase. Additionally, 37.2% of these priority corridors pass through protected areas, providing guidance for optimizing existing reserves and addressing conservation gaps that cover 61.2% of the study area. The study highlights the need for habitat conservation strategies for Asian elephants to fully consider the uncertainties of dynamic spatiotemporal changes. It emphasizes the global significance of macro-scale ecological network design and the critical role of constructing long-distance corridors. Furthermore, the integration of protected areas with long-distance ecological corridors is identified as a key measure to address future uncertainties and achieve lasting biodiversity conservation.</p>","PeriodicalId":100680,"journal":{"name":"Integrative Conservation","volume":"4 1","pages":"57-70"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inc3.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Conservation","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inc3.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Amid ongoing habitat degradation and fragmentation, along with the disruption of traditional moving routes, the Kunming-Montreal Global Biodiversity Framework underscores the urgent need to enhance species connectivity to improve their adaptability to climate change. Recent instances of long-distance movements by Asian elephants (Elephas maximus) have raised concerns about the potential for such events to become more frequent under future climate scenarios. A landscape adaptation strategy is urgently needed to improve the connectivity and integrity of Asian elephant habitats to meet their long-distance movement requirements. However, large-scale ecological networks for Asian elephants that incorporate long-distance corridors remain lacking. This study employs species distribution models and minimum resistance models to construct current and future multi-scenario ecological networks, aiming to elucidate key features of climate adaptability and priority corridor strategies for Asian elephants. Our findings indicate that long-distance corridors identified under future climate scenarios play an integral part in maintaining connectivity within the priority network. The study identifies 162 priority long-distance corridors, accounting for 25.5% of the overall network, whose lengths and importance are expected to increase. Additionally, 37.2% of these priority corridors pass through protected areas, providing guidance for optimizing existing reserves and addressing conservation gaps that cover 61.2% of the study area. The study highlights the need for habitat conservation strategies for Asian elephants to fully consider the uncertainties of dynamic spatiotemporal changes. It emphasizes the global significance of macro-scale ecological network design and the critical role of constructing long-distance corridors. Furthermore, the integration of protected areas with long-distance ecological corridors is identified as a key measure to address future uncertainties and achieve lasting biodiversity conservation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信