{"title":"Relative cubulation of relative strict hyperbolization","authors":"Jean-François Lafont, Lorenzo Ruffoni","doi":"10.1112/jlms.70093","DOIUrl":null,"url":null,"abstract":"<p>We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a <span></span><math>\n <semantics>\n <mrow>\n <mo>CAT</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{CAT}(0)$</annotation>\n </semantics></math> cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non-positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non-triangulable aspherical manifolds with virtually special fundamental group.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70093","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non-positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non-triangulable aspherical manifolds with virtually special fundamental group.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.