Relative cubulation of relative strict hyperbolization

IF 1 2区 数学 Q1 MATHEMATICS
Jean-François Lafont, Lorenzo Ruffoni
{"title":"Relative cubulation of relative strict hyperbolization","authors":"Jean-François Lafont,&nbsp;Lorenzo Ruffoni","doi":"10.1112/jlms.70093","DOIUrl":null,"url":null,"abstract":"<p>We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a <span></span><math>\n <semantics>\n <mrow>\n <mo>CAT</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{CAT}(0)$</annotation>\n </semantics></math> cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non-positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non-triangulable aspherical manifolds with virtually special fundamental group.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70093","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a CAT ( 0 ) $\operatorname{CAT}(0)$ cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non-positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non-triangulable aspherical manifolds with virtually special fundamental group.

Abstract Image

相对严格夸张的相对孕育
证明了在CAT (0)$ \operatorname{CAT}(0)$立方复上,许多由相对严格双曲化得到的相对双曲群存在紧作用。在外围子群的适当假设下,这些群是残差有限的,甚至实际上是特殊的。本文给出了流形理论中的一些应用,如具有剩余有限基本群的新的非正弯曲黎曼流形的构造,以及具有几乎特殊基本群的非三角非球流形的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信