Marwa Sulaiman Al Hinai, Abdul Rehman, Kadambot H. M. Siddique, Muhammad Farooq
{"title":"The Role of Trehalose in Improving Drought Tolerance in Wheat","authors":"Marwa Sulaiman Al Hinai, Abdul Rehman, Kadambot H. M. Siddique, Muhammad Farooq","doi":"10.1111/jac.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drought stress severely impacts wheat growth, development and yield, significantly challenging global food security. Wheat is a staple crop worldwide, and increasing its drought resilience is crucial. Trehalose, a stress-protective disaccharide, is crucial for enhancing drought tolerance. This review examines strategies for strengthening wheat's drought resilience through trehalose, including genetic modifications to enhance trehalose synthesis and external applications. It discusses how trehalose influences vital physiological processes—such as osmotic adjustment, oxidative stress reduction and cellular stability—that collectively boost drought tolerance. Additionally, this review explores nano-trehalose formulations, particularly nano-trehalose chitosan, as innovative means to improve trehalose delivery and efficacy. The review also synthesises recent findings, highlighting trehalose's role in supporting drought tolerance and its broader potential in sustainable agriculture. Integrating trehalose-based strategies and nanotechnology offers a promising pathway for developing drought-resistant wheat varieties, contributing to sustainable wheat production and global food security.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"211 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.70053","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress severely impacts wheat growth, development and yield, significantly challenging global food security. Wheat is a staple crop worldwide, and increasing its drought resilience is crucial. Trehalose, a stress-protective disaccharide, is crucial for enhancing drought tolerance. This review examines strategies for strengthening wheat's drought resilience through trehalose, including genetic modifications to enhance trehalose synthesis and external applications. It discusses how trehalose influences vital physiological processes—such as osmotic adjustment, oxidative stress reduction and cellular stability—that collectively boost drought tolerance. Additionally, this review explores nano-trehalose formulations, particularly nano-trehalose chitosan, as innovative means to improve trehalose delivery and efficacy. The review also synthesises recent findings, highlighting trehalose's role in supporting drought tolerance and its broader potential in sustainable agriculture. Integrating trehalose-based strategies and nanotechnology offers a promising pathway for developing drought-resistant wheat varieties, contributing to sustainable wheat production and global food security.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.