A New Method to Investigate Denitrification Dynamics During Simulated Floods in Soils

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Rana Kanaan, Romain Darnajoux, Laura Escarmena, Sabine Sauvage, Thierry Camboulive, Jean-Louis Druilhe, José Miguel Sánchez-Pérez
{"title":"A New Method to Investigate Denitrification Dynamics During Simulated Floods in Soils","authors":"Rana Kanaan,&nbsp;Romain Darnajoux,&nbsp;Laura Escarmena,&nbsp;Sabine Sauvage,&nbsp;Thierry Camboulive,&nbsp;Jean-Louis Druilhe,&nbsp;José Miguel Sánchez-Pérez","doi":"10.1111/ejss.70098","DOIUrl":null,"url":null,"abstract":"<p>Riparian ecosystems, through their anoxic properties driven by floods, play a crucial role in favouring denitrification. The absence of nitrous oxide (N<sub>2</sub>O) reductase activity in the denitrification process provokes the emission of a potent greenhouse gas (GHG), N<sub>2</sub>O, into the atmosphere. Our understanding of the contribution of denitrification to N<sub>2</sub>O emissions is limited by the difficulties in capturing peak N<sub>2</sub>O events and measuring dinitrogen gas (N<sub>2</sub>), the final product of the process under soil flooding. In this study, we describe the GHG-Aquacosme, a new laboratory-based and ecosystem-relevant approach to simulate flood conditions and investigate GHG flux dynamics in intact riparian soil cores, focusing on N<sub>2</sub>O. The system capabilities were tested on two different riparian soils with simultaneous monitoring of N<sub>2</sub>O, carbon dioxide and porewater chemistry. We also used a simple mass balance approach to estimate the N<sub>2</sub> emissions. The GHG-Aquacosme proved efficient in the incubation of soil samples under atmospheric conditions, preserving the initial soil structure and heterogeneity and providing a high temporal resolution of N<sub>2</sub>O emission dynamics upon flooding. This translated into heterogeneous outputs in terms of N<sub>2</sub>O dynamics and denitrification-related parameters such as N<sub>2</sub>O yield and nitrate removal efficiency. Finally, accounting for nitrogen (N) species diffusion within the system is recommended, and the setup can easily accommodate isotopic N tracer methodologies to investigate other N cycle pathways. Further research is encouraged to determine how the results from the GHG-Aquacosme application can be utilised in predictive models of N<sub>2</sub>O emissions, particularly in relation to future scenarios and projections of riparian flooding.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70098","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Riparian ecosystems, through their anoxic properties driven by floods, play a crucial role in favouring denitrification. The absence of nitrous oxide (N2O) reductase activity in the denitrification process provokes the emission of a potent greenhouse gas (GHG), N2O, into the atmosphere. Our understanding of the contribution of denitrification to N2O emissions is limited by the difficulties in capturing peak N2O events and measuring dinitrogen gas (N2), the final product of the process under soil flooding. In this study, we describe the GHG-Aquacosme, a new laboratory-based and ecosystem-relevant approach to simulate flood conditions and investigate GHG flux dynamics in intact riparian soil cores, focusing on N2O. The system capabilities were tested on two different riparian soils with simultaneous monitoring of N2O, carbon dioxide and porewater chemistry. We also used a simple mass balance approach to estimate the N2 emissions. The GHG-Aquacosme proved efficient in the incubation of soil samples under atmospheric conditions, preserving the initial soil structure and heterogeneity and providing a high temporal resolution of N2O emission dynamics upon flooding. This translated into heterogeneous outputs in terms of N2O dynamics and denitrification-related parameters such as N2O yield and nitrate removal efficiency. Finally, accounting for nitrogen (N) species diffusion within the system is recommended, and the setup can easily accommodate isotopic N tracer methodologies to investigate other N cycle pathways. Further research is encouraged to determine how the results from the GHG-Aquacosme application can be utilised in predictive models of N2O emissions, particularly in relation to future scenarios and projections of riparian flooding.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信