Andrey Kaveev, Vladimir Fedorov, Dmitry Miniv, Alexandr Goltaev, Demid Kirilenko, Andrey Malenin, Ivan Mukhin
{"title":"Epitaxial growth of bismuth on CaF2/Si(111): from planar films to self-organized arrays of nanostructures","authors":"Andrey Kaveev, Vladimir Fedorov, Dmitry Miniv, Alexandr Goltaev, Demid Kirilenko, Andrey Malenin, Ivan Mukhin","doi":"10.1107/S1600576725001591","DOIUrl":null,"url":null,"abstract":"<p>Bismuth nanostructures are quite attractive in the area of colorimetry and semiconductor nanoelectronics because of their multi-coloured luminescence and quantum confinement. In this work, detailed studies of the crystalline structure and surface morphology of bismuth nanostructures grown on a planar CaF<sub>2</sub>/Si(111) surface have been carried out. The growth was performed using molecular beam epitaxy. The different surface morphologies of Bi on CaF<sub>2</sub> are demonstrated. With an increase in temperature from room temperature to 200°C, Bi undergoes a morphology change from planar to island-like, with a tendency to enlargement. At temperatures of 100–125°C, two types of nanowires with different geometric parameters are observed. Bi nano-island nucleation on a grooved and ridged CaF<sub>2</sub>/Si(001) surface was also studied. X-ray diffraction analysis shows an ordered multiple-domain growth character in all cases. Precise analysis of nanowire and island faceting based on a combination of scanning and transmission electron microscopy and X-ray diffraction simulations has been carried out.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 2","pages":"419-428"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725001591","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bismuth nanostructures are quite attractive in the area of colorimetry and semiconductor nanoelectronics because of their multi-coloured luminescence and quantum confinement. In this work, detailed studies of the crystalline structure and surface morphology of bismuth nanostructures grown on a planar CaF2/Si(111) surface have been carried out. The growth was performed using molecular beam epitaxy. The different surface morphologies of Bi on CaF2 are demonstrated. With an increase in temperature from room temperature to 200°C, Bi undergoes a morphology change from planar to island-like, with a tendency to enlargement. At temperatures of 100–125°C, two types of nanowires with different geometric parameters are observed. Bi nano-island nucleation on a grooved and ridged CaF2/Si(001) surface was also studied. X-ray diffraction analysis shows an ordered multiple-domain growth character in all cases. Precise analysis of nanowire and island faceting based on a combination of scanning and transmission electron microscopy and X-ray diffraction simulations has been carried out.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.