Prediction of Tribological Properties of PC-PBT/GNP-MWCNT Nanocomposites Using Machine Learning Models

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Tuba Özdemir ÖGE, Mecit ÖGE
{"title":"Prediction of Tribological Properties of PC-PBT/GNP-MWCNT Nanocomposites Using Machine Learning Models","authors":"Tuba Özdemir ÖGE,&nbsp;Mecit ÖGE","doi":"10.1002/app.56834","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effect of the incorporation of multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in polycarbonate-poly(butylene terephthalate) (PC-PBT) blends on the mechanical and tribological blend properties. PC-PBT/GNP-MWCNT nanocomposites were synthesized via melt-compounding with various filler loadings (0.5, 1, 3, 5, and 7 wt.%). SEM analyses revealed adequate dispersion and strong interaction between the nano-fillers and the polymer matrix. Mechanical testing demonstrated up to ~16%, ~38%, and ~9% improvement in tensile modulus, bending modulus, and impact strength, respectively, with the optimum nano-filler fraction of 0.5 wt. %. Tribological assessments, conducted using a pin-on-disc apparatus, showed marked reductions in specific wear rates (SWRs) reaching ~87% at the optimal filler loading of 0.5 wt.%. The mechanical behavior of the nanocomposites was found to depend primarily on dispersion state, whereas tribological properties were found to be dictated by a transfer film formation mechanism facilitated by filler addition. The experimental results were corroborated by a Random Forest machine learning model yielding the highest accuracy with R<sup>2</sup> = 0.94 for tensile modulus estimations and R<sup>2</sup> = 0.82 for SWR estimations under a 10 N load.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 18","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.56834","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56834","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of the incorporation of multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in polycarbonate-poly(butylene terephthalate) (PC-PBT) blends on the mechanical and tribological blend properties. PC-PBT/GNP-MWCNT nanocomposites were synthesized via melt-compounding with various filler loadings (0.5, 1, 3, 5, and 7 wt.%). SEM analyses revealed adequate dispersion and strong interaction between the nano-fillers and the polymer matrix. Mechanical testing demonstrated up to ~16%, ~38%, and ~9% improvement in tensile modulus, bending modulus, and impact strength, respectively, with the optimum nano-filler fraction of 0.5 wt. %. Tribological assessments, conducted using a pin-on-disc apparatus, showed marked reductions in specific wear rates (SWRs) reaching ~87% at the optimal filler loading of 0.5 wt.%. The mechanical behavior of the nanocomposites was found to depend primarily on dispersion state, whereas tribological properties were found to be dictated by a transfer film formation mechanism facilitated by filler addition. The experimental results were corroborated by a Random Forest machine learning model yielding the highest accuracy with R2 = 0.94 for tensile modulus estimations and R2 = 0.82 for SWR estimations under a 10 N load.

Abstract Image

本研究探讨了在聚碳酸酯-聚对苯二甲酸丁二醇酯(PC-PBT)共混物中加入多壁碳纳米管(MWCNT)和石墨烯纳米片(GNP)对共混物机械性能和摩擦学性能的影响。PC-PBT/GNP-MWCNT 纳米复合材料是通过熔融共混合成的,填料添加量各不相同(0.5、1、3、5 和 7 wt.%)。扫描电镜分析表明,纳米填料与聚合物基体之间具有充分的分散性和很强的相互作用。机械测试表明,最佳纳米填料含量为 0.5 重量百分比时,拉伸模量、弯曲模量和冲击强度分别提高了约 16%、约 38% 和约 9%。使用针盘装置进行的摩擦学评估表明,在最佳填充量为 0.5 wt.% 时,特定磨损率(SWR)明显降低,达到约 87%。研究发现,纳米复合材料的机械性能主要取决于分散状态,而摩擦学性能则取决于填料添加后的转移膜形成机制。实验结果得到了随机森林机器学习模型的证实,该模型在 10 N 负载下的拉伸模量估计和 SWR 估计的准确度分别为 R2 = 0.94 和 R2 = 0.82,准确度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信