{"title":"Gulf Stream Near Cape Hatteras Modulates Sea Level Variability Along the Southeastern Coast of North America","authors":"Tianning Wu, Ruoying He","doi":"10.1029/2024GL112776","DOIUrl":null,"url":null,"abstract":"<p>Studies suggest a strong link between low-frequency sea level variability in the South Atlantic Bight (SAB) and open ocean dynamics. However, the mechanisms driving this connection remain unclear. By analyzing a high-resolution, three-dimensional baroclinic ocean reanalysis, we identify a pathway that links open ocean dynamics to SAB coastal sea level variability through the shelf edge near Cape Hatteras. Gulf Stream meanders in this region induce sea level fluctuations that propagate along the entire SAB shelf. Using an idealized barotropic model, we further demonstrate that topographic waves mediate the propagation of the Gulf Stream signal onto the shelf. Moreover, the Gulf Stream variability is driven by zonal wind stress in the Northwest Atlantic, which is likely modulated by the North Atlantic Oscillation. These findings offer new insights into regional sea level prediction and contribute to broader climate research efforts.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112776","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112776","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies suggest a strong link between low-frequency sea level variability in the South Atlantic Bight (SAB) and open ocean dynamics. However, the mechanisms driving this connection remain unclear. By analyzing a high-resolution, three-dimensional baroclinic ocean reanalysis, we identify a pathway that links open ocean dynamics to SAB coastal sea level variability through the shelf edge near Cape Hatteras. Gulf Stream meanders in this region induce sea level fluctuations that propagate along the entire SAB shelf. Using an idealized barotropic model, we further demonstrate that topographic waves mediate the propagation of the Gulf Stream signal onto the shelf. Moreover, the Gulf Stream variability is driven by zonal wind stress in the Northwest Atlantic, which is likely modulated by the North Atlantic Oscillation. These findings offer new insights into regional sea level prediction and contribute to broader climate research efforts.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.