Deepak Kumar, Subhash Chandra, Vivek Kumar, Pradeep Kumar Yadav, Syed Hadi Hasan
{"title":"Fluorometric sensing probe using carbon quantum dots for selective detection of doxycycline antibiotic","authors":"Deepak Kumar, Subhash Chandra, Vivek Kumar, Pradeep Kumar Yadav, Syed Hadi Hasan","doi":"10.1007/s42823-024-00839-6","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the sturdy photoluminescence and absorption, CQDs emerged as a suitable candidate for optical sensing probe. The present study deals with the synthesis of blue-fluorescent Carbon Quantum Dot (TAA-CQD) using tannic acid and glycine as novel precursors. The TAA-CQD were synthesised hydrothermally with the high production yield and QY to be 86.12 and 21%, respectively, and an average particle size of 1.9 nm. The TAA-CQD aqueous solution displays excitation-dependent fluorescence emission in the excited range from 420 to 650 nm. The CIE co-ordinates in a highly blue region at (0.14, 0.19) confirmed the synthesised TAA-CQD were blue in fluorescent. Fluorescence of TAA-CQD was stable under all pH range, resisted the high ionic strengths condition and stable over 8 months. Furthermore, the fluorescent TAA-CQD was capable in detecting a tetracycline-classed antibiotic Doxycycline (DXY) along with remarkable selectivity and sensitivity. The measures limit of detection (LOD) was very low 2.42 mM in comparison to other methods. Moreover, the applicability of the proposed work has been fruitfully employed on the pharmaceutical waste. Thus, our designed TAA-CQD based fluorescence sensing system hold great promise for the advanced sensing materials in the detection of DXY and we believe that our approach will be promising and viable in a clinical applications.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"895 - 905"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00839-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the sturdy photoluminescence and absorption, CQDs emerged as a suitable candidate for optical sensing probe. The present study deals with the synthesis of blue-fluorescent Carbon Quantum Dot (TAA-CQD) using tannic acid and glycine as novel precursors. The TAA-CQD were synthesised hydrothermally with the high production yield and QY to be 86.12 and 21%, respectively, and an average particle size of 1.9 nm. The TAA-CQD aqueous solution displays excitation-dependent fluorescence emission in the excited range from 420 to 650 nm. The CIE co-ordinates in a highly blue region at (0.14, 0.19) confirmed the synthesised TAA-CQD were blue in fluorescent. Fluorescence of TAA-CQD was stable under all pH range, resisted the high ionic strengths condition and stable over 8 months. Furthermore, the fluorescent TAA-CQD was capable in detecting a tetracycline-classed antibiotic Doxycycline (DXY) along with remarkable selectivity and sensitivity. The measures limit of detection (LOD) was very low 2.42 mM in comparison to other methods. Moreover, the applicability of the proposed work has been fruitfully employed on the pharmaceutical waste. Thus, our designed TAA-CQD based fluorescence sensing system hold great promise for the advanced sensing materials in the detection of DXY and we believe that our approach will be promising and viable in a clinical applications.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.