{"title":"Toward high energy and durable anodes: critical review on Li4Ti5O12–MXene composites","authors":"Fereshteh Abbasi, Farshad Boorboor Ajdari, Mohammadreza Mansournia, Parnaz Asghari, Ali Molaei Aghdam","doi":"10.1007/s42823-025-00888-5","DOIUrl":null,"url":null,"abstract":"<div><p>LTO is a commercial anode material that contributes to delivered energy and cycle stability. With affordability and high energy density, graphite faces limited cycle time and inferior stability. Here, we discussed the LTO challenges and compared the Ti-based anode from the original structure to the LTO-MXene composites, which are promising alternative anodes. Spinel lithium titanate (LTO) possesses high working voltage, stability, safety, and negligible volume change, while it suffers from low electronic conductivity that limits rate performance at large current densities. 2D Mxenes have recently drawn attention to various applications due to high conductivity, large surface area, flexibility, and polar surface benefits. We critically reviewed the synthesis approaches, morphology views, and electrochemical behavior of LTO-MXene as new anode materials in lithium-ion batteries (LIBs). There are few reports on LTO-MXene anodes in LIBs. They provide a synergistic action of LTO and MXene, enhancing the accessibility of electrolytes and reducing the distance, benefiting fast diffusion. This review paper sheds light on how the synthesis approaches can directly affect LIB configurations' durability and energy density and lead researchers to develop features of LTO anodes with promising engagement.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"515 - 537"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00888-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
LTO is a commercial anode material that contributes to delivered energy and cycle stability. With affordability and high energy density, graphite faces limited cycle time and inferior stability. Here, we discussed the LTO challenges and compared the Ti-based anode from the original structure to the LTO-MXene composites, which are promising alternative anodes. Spinel lithium titanate (LTO) possesses high working voltage, stability, safety, and negligible volume change, while it suffers from low electronic conductivity that limits rate performance at large current densities. 2D Mxenes have recently drawn attention to various applications due to high conductivity, large surface area, flexibility, and polar surface benefits. We critically reviewed the synthesis approaches, morphology views, and electrochemical behavior of LTO-MXene as new anode materials in lithium-ion batteries (LIBs). There are few reports on LTO-MXene anodes in LIBs. They provide a synergistic action of LTO and MXene, enhancing the accessibility of electrolytes and reducing the distance, benefiting fast diffusion. This review paper sheds light on how the synthesis approaches can directly affect LIB configurations' durability and energy density and lead researchers to develop features of LTO anodes with promising engagement.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.